Fall 11-2-2015

Enabling technologies for integrated / continuous downstream processing of biologics

Jeff Salm
Pfizer, jeff.salm@pfizer.com

Marcus Fiadeiro
Pfizer

Raquel Orozco
Boehringer Ingelheim

Jill Kublbeck
Pfizer

Aaron Noyes
Pfizer

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/biomanufact_ii

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
Authors
Jeff Salm, Marcus Fiadeiro, Raquel Orozco, Jill Kublbeck, Aaron Noyes, Jeff Horne, Daniel LaCasse, Ashley Sacramo, Suhani Gupta, John Coffman, and Robert Fahrner

This conference proceeding is available at ECI Digital Archives: http://dc.engconfintl.org/biomanufact_ii/108
ENABLING TECHNOLOGIES FOR INTEGRATED / CONTINUOUS DOWNSTREAM PROCESSING OF BIOLOGICS

Jeff Salm, Pfizer
Jeff.salm@pfizer.com
Marcus Fiadeiro, Pfizer
Raquel Orozco, Boehringer Ingelheim
Jill Kublbeck, Pfizer
Aaron Noyes, Pfizer
Jeff Horne, Pfizer
Daniel LaCasse, Pfizer
Ashley Sacramo, Pfizer
Suhani Gupta, Boehringer Ingelheim
John Coffman, Boehringer Ingelheim
Robert Fahrner, Pfizer

Key Words: integrated, continuous, purification, chromatography, filtration

Pfizer Bioprocessing R&D is focused on developing enabling technologies that will reduce capital and operational expenses, decrease equipment scale, increase automation and utilize fewer FTEs. To realize this vision, Purification Process Development has piloted new technologies and operational strategies that have enabled a fully integrated downstream process. Our current work has demonstrated a continuous process that includes tangential flow filtration harvest from a perfusion bioreactor, Protein A capture, inline viral inactivation/conditioning and AEX polishing. This process was fully automated and demonstrated at the 100 L scale. We have also shown feasibility of multi-day virus reduction filter operation and a continuous ultrafiltration/diafiltration using counter-current single-pass tangential flow filtration. These technologies and strategies are critical elements of our long term goal of establishing a fully integrated process from bioreactor to drug substance. With this process, we hope to remove product supply as a critical path activity for both toxicology and clinical needs.