CLC, a promising concept with challenging development issues

Thierry Gauthier
IFP Energies nouvelles, France

M. Yazdanpanah
Total, Research & Technology Gonfreville (TRTG), France, mahdi.yazdanpanah@total.com

A. Forret
IFP Energies nouvelles, France

B. Amblard
IFP Energies nouvelles, France

A. Lambert
IFP Energies nouvelles, France

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv

Part of the Chemical Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Thierry Gauthier, M. Yazdanpanah, A. Forret, B. Amblard, A. Lambert, and S. Bertholin

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/fluidization_xv/108
CLC, a promising concept with challenging development issues

Th. Gauthier, M. Yazdanpanah*, A. Forret, B. Amblard, A. Lambert and S. Bertholin

IFP Energies nouvelles, BP3 69360 Solaize, France
*Total, Research & Technology Gonfreville (TRTG), 76700 Harfleur, France

Fluidization XV : May 25th, 2016
Agenda

- **CCS**: CO$_2$ Capture and Storage
- CLC status
 - Concept
 - Economics
 - Materials
 - Pilot plant testing
- CLC technology and scale-up issues for solid fuels
 - CLC scales for coal power plants
 - Fuel reactor concept
 - Control of solid circulation
 - Control of PSD
 - Attrition procedures for oxygen carrier screening
 - Limit ΔP in the Air Reactor to minimize energy penalty
- Concluding Remarks
CO₂ Capture and Storage status

- **2°C Scenario →** Avoid 7 Gt by 2050 (50% from coal power plants)
 - 2016: 15 CCS projects in operation: 28 Mt CO₂ captured
 - this is about 0.4% of the « 2°C target »!!

- **Capture**: pre-combustion, post combustion, oxycombustion
 - Large additional investment, energy penalty

- **Transport** by boat or pipeline (≈1 M€/m(φ) /km (L))
 - Infrastructures are not there yet – permitting issue

- **Storage** in aquifers, oil and gas reservoir, coal beds
 - Storage capacity estimates are very encouraging
 - Public acceptance can be a challenge

- **CCS is a cost with no benefit** (except for EOR projects or CO₂ use)

 - CO₂ storage cost: 15 €/tCO₂ (1 Mt/an) / 5 €/tCO₂ (10 Mt/an)
 - CO₂ capture cost: > 30-40 €/t CO₂ avoided
 - CO₂ transport cost: > 1-3 €/t CO₂ avoided

CO2 market / policy

- Huge investments will happen only with strong CO2 market perspectives
- There are encouraging signs …
 - Regional strategies (China, US, EU, Japan…)
 - Recent global COP 21 Consensus reached in Paris

but only 12% of CO2 emissions under local market regulations yet

Reaching consensus takes time
A time to market delay of 10 -15 years is expected for CCS
Chemical Looping Combustion concept

CLC for CCS applications first proposed by Ishida (1987, 1994)

- **Benefits**
 - Low energy penalty
 - (5% with 4% related to CO2 compression cost)
 - Low CO2 avoidance cost
 - our estimate 37€/t CO2

A promising G2 concept to be demonstrated

Impacts of CCS for a 630 MWe Coal power plant

IFPEN Total study (basis: France 2012)

<table>
<thead>
<tr>
<th>Reference CFB unit</th>
<th>Amine MEA30%</th>
<th>CLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Electric production (MWe)</td>
<td>630</td>
<td>630</td>
</tr>
<tr>
<td>Net Electric yield (%)</td>
<td>44.9</td>
<td>34.9</td>
</tr>
<tr>
<td>Coal consumption (t/h)</td>
<td>198</td>
<td>255</td>
</tr>
<tr>
<td>Capex (M€)</td>
<td>1215</td>
<td>2064</td>
</tr>
<tr>
<td>Opex (M€)</td>
<td>156</td>
<td>220</td>
</tr>
<tr>
<td>Cost of Electricity (€/MWh)</td>
<td>63</td>
<td>98</td>
</tr>
<tr>
<td>CO2 avoidance cost [€/t/CO2]</td>
<td>53</td>
<td>37</td>
</tr>
</tbody>
</table>
CLC material: oxygen carrier

- Several potential oxygen carrier materials (hundreds evaluated already)
 - Metal oxides: Ni, Fe, Mn, Co, Cu (…), perovskites ….

- Several points to consider
 - Oxygen transfer capacity, Reactivity, Aging, Availability, syn.materials or mining ores?

<table>
<thead>
<tr>
<th>Mining Ore</th>
<th>Synthetic material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>spray drying / granulation</td>
</tr>
<tr>
<td>Price</td>
<td>granulation in the range of 10 €/kg</td>
</tr>
<tr>
<td>Recycling</td>
<td>Treatment (hydro/pyrometallurgy? 3-5 €/kg)</td>
</tr>
<tr>
<td>Shape</td>
<td>high sphericity</td>
</tr>
<tr>
<td>Price</td>
<td>0.15 (crude) → 1 €/kg prepared</td>
</tr>
<tr>
<td>Price</td>
<td>back to the ore industry ?</td>
</tr>
<tr>
<td>Price</td>
<td>low sphericity</td>
</tr>
</tbody>
</table>

- Redox aging is the issue
 - No report of successful operation > 500 cycles
 - Relates to ionic migration and volume changes (Fan, 2015)

- Industrial perspective = 15000–30000 cycles per year
 - Impact of aging on process economics is significant

We need to improve oxygen carrier aging performance

Knutsson and Linderholm, 3rd International Conference on CLC, Chalmers (2014)
CLC tools for testing

- Nature of the feedstock greatly impacts design aspects
- For solid fuels: gasification is a limiting step and fuel reactor design is critical
Several pilot plants all over the world

CLC continuous operation successfully achieved (100-200 redox cycles max)
There is a need for optimisation of technology

Investigation of new concepts
- Staged Fluidized bed (TU Hamburg)
- CFB fuel reactor with internals (TU Vienna)

Combustion of volatile materials is an issue

Autothermal operation. Fuel Reactor design?

Ifpen–Total CLC process concepts

Process constraints

- to maximize CO$_2$ capture (coal application)
- enough contact for syngas and volatiles combustion
- enough time for gasification reaction (coal application)

Key Features

- Carbon conversion per pass > 60%
- CO$_2$ capture rate > 90%
- Oxygen captured from the Air >90%

Diagram

- Fuel Reactor
- Oxygen carrier from Air Reactor
- Gasification Zone with Steam and Coal inputs
- Syngas Conversion Zone
- Carbon Stripper zone
- Flue gas flow with Fly ashes And Fines
- Unburnt Coal recycle

Ref: Bourgeon et al., 2nd Int. Conf CLC, Darmstadt (2012)
Control of solid circulation

- **Large flowrates in between interconnected reactors**
 - Control of temperature / oxygen carrier reduction rate

- **CLC is high temperature > 850°C**
 - Not suitable for mechanical valves (FCC Slide valves...)
 - Use of non mechanical L-valves
 - Use group B material oxygen carrier

Gas flow in standpipe relates to ΔP

Solid flow relates to actual gas flow in the valve

Ref: Knowlton and Hirsan, Hydrocarbon Processing (1978) 27, 149-156
Yazdanpanah et al., Powder Technol. (2012), 221, 236-244
Control of PSD: 3 different solids to consider

- **Oxygen carrier** (100–300 microns – design choice)
 Large PSD (L-Valve, carbon stripper separation)

- **Coal** (50–100 microns – design choice)
 Small PSD (Fast gasification, carbon stripper separation)
 → high efficiency cyclones to keep char in the FR

- **Ash**
 - **Fly Ash** (0–100 microns – no choice)
 Avoid accumulation in the unit (L-valve)
 Fly ash elutriation has to be considered
 - **Agglomerated Ash**? (depends from coal and $T_{Fuel~reactor}$)
 Relates to coal composition and T fuel reactor
 Avoid settling at the fuel reactor bottom

Account for PSD changes:
- along the loop
- function of aging
Attrition procedures for oxygen carrier screening

Screening → small samples available with different physical properties \((d_{sv}, \rho_p)\)

Challenge: use a workable attrition index
use comparable testing conditions with similar stress

<table>
<thead>
<tr>
<th></th>
<th>Group A particles</th>
<th>Group B particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al(20) (wt%)</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Al(44) (wt%)</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>TPGI (wt%)</td>
<td>27</td>
<td>15</td>
</tr>
</tbody>
</table>

Minimize ΔP in the air reactor

CLC energy penalty is strongly depending upon air compression:
ΔP air reactor = 100 mb \iff 0.5% energy penalty

objective: find operating conditions that minimize ΔP in air reactor while maximizing air / oxygen carrier contact

RISER D=0.3m

Data collection

Modelling

Strong unexpected impact of particle shape!

1D model prediction

1D: Drag adjustment needed

CFD: Difficulty to well predict
Core annulus structure

Conclusions

- **CLC is a promising G2 concept for CCS**
 - Favourable economics and limited energy penalty
 - Demonstrated at pilot scale with a limited number of redox cycles (<500)

- **Next step is demonstration:**
 - But aging of oxygen carrier is an important issue to be solved
 - Efforts needed for process optimization, scaling up and other aspects such as flexibility of operation

- **CLC future in the CCS perspective?**
 - Demos are very expensive
 - We need a clear CO2 market perspective
 - Time to market delay to 2025–2030 for CCS?
 - Opportunity to optimize oxygen carrier materials and technology
Acknowledgement to Total and Ifpen research teams that were actively involved and collaborating in the CLC project over the past eight years