Layer orientation and size effects on micropillar compression of Al/SiC nanolaminates

Lingwei Yang
IMDEA, yang.lingwei@imdea.org

Carl Mayer
Arizona State University

Nik Chawla
Arizona State University

Javier Llorca
IMDEA

Jon Molina
IMDEA

Follow this and additional works at: http://dc.engconfintl.org/nanomechtest_v

Part of the Materials Science and Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Nanomechanical Testing in Materials Research and Development V by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Layer Orientation and Size Effects on Micropillar Compression of Al/SiC nanolaminates

Lingwei Yang¹, Carl Mayer², Nik Chawla, Javier Llorca¹,³, J.M Molina Aldareguia¹

1. IMDEA Materials Institute, 28906 Getafe, Madrid, Spain ; 2. Arizona State University, Tempe 85287 AZ, USA ; 3. Polytechnic University of Madrid, Madrid, Spain

Introduction
1. Metal/ceramic nanolaminates show promise as high strength and toughness materials, when reducing the individual layer thickness to nanometer regime (<100 nm) [1-3].
2. Micropillar compression tests have been widely employed to study the deformation mechanisms of nanolaminates with force generally perpendicular to individual layers [1,4-5].
3. Nanolaminate strength is subjected to “smaller is stronger” effects, which relates not only to the individual layer thicknesses, but to the micropillar size [5].
4. This work is mainly focused on the deformation mechanism study of a typical metal/ceramic Al/SiC nanolaminates as a function of layer orientation and layer thickness/pillar size, by micropillar compression, with the help of finite element analysis (FEA).

Material and Methods
1. Al/SiC nanolaminates with individual layer thickness varying between 10~100 nm were prepared by magnetron sputtering deposition in Los Alamos National laboratory, and they are mounted on epoxy at 0º, 45º and 90º orientations.
2. Focused ion beam (FIB) milling technology was employed to fabricate 0º, 45º and 90º micropillars, with diameter-to-height dimensions of 1x2, 2x4 and 2x6 (unit, μm).
3. FEA was performed to study the micropillar deformation, utilizing commercial Abaqus 6.12. The Al-SiC interface was varied from perfectly flat to adopting sinusoidal waveforms (wave length 0.5 μm, amplitude 0~50 nm) to account for layer waviness effects.

<table>
<thead>
<tr>
<th>Material</th>
<th>Elastic Modulus</th>
<th>Yield Stress</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>70 GPa</td>
<td>935 MPa</td>
<td>0.34</td>
</tr>
<tr>
<td>SiC</td>
<td>300 GPa</td>
<td>7 GPa</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Table 1 Material properties of Al and SiC for FEA analysis

Results and Discussion

Effect of Layer Orientation on Al/SiC Deformation
- Fig. 2 Experimental stress strain curves of Al50SiC50 showing the effect of layer orientation on mechanical response for different geometries.
- Al/SiC micropillar strength was highly dependent on layer orientations.

Effect of Layer Waviness on Al/SiC Deformation
- Fig. 3 Compressed 1x2 μm micropillars for 0º (a, b), 90º (c, d), and 45º (e, f) orientations.
- A “thinner is stronger” effect was obtained for Al/SiC micropillar strength.

Effect of Layer Thickness on Al/SiC Deformation
- Table 1 Material properties of Al and SiC for FEA analysis

Effect of Micropillar Size on Al/SiC Deformation
- Weibull distribution function was employed to study pillar size effects:
 \[\ln(\frac{1}{P_s}) - \ln V = m[\ln(\sigma) + \ln(V/V_c)] \]

\[P_s: \] Probability of fracture
\[\sigma: \] fracture stress of micropillar
\[V: \] micropillar volume
\[m: \] Weibull modulus
\[V_c: \] characteristic volume and strength

The difference in strength with different pillar size can be attributed to the lower probability for the smaller pillars to contain a strength limiting flaw.

Effect of Layer Thickness on Al/SiC Deformation
- Table 1 Material properties of Al and SiC for FEA analysis

Layer waviness can have an effect on micropillar strength
- Fig. 4 Cross sectional morphologies of Al50SiC25 with (a) 100 nm, (b) 200 nm, (c) 300 nm compression depth.
- Fig. 5 Stress-strain curves of the experimental and simulated results of Al50SiC25 with varying layer waviness amplitude.
- Fig. 6: Mises stress contours of the deformed micropillars with (a) Amplitude: 0; (b) Amplitude: 10 nm; (c) Amplitude: 20 nm; (d) Amplitude: 30 nm; (e) Amplitude: 50 nm.

References