Thermally activated deformation in cast aluminium microwires

Suzanne Verheyden
EPFL, suzanne.verheyden@epfl.ch

Jerome Krebs
EPFL

Andreas Mortensen
EPFL

Follow this and additional works at: http://dc.engconfintl.org/nanomechtest_v

Part of the Materials Science and Engineering Commons

Recommended Citation

THERMALLY ACTIVATED DEFORMATION IN CAST ALUMINIUM MICROWIRES

Suzanne Verheyden, Ecole Polytechnique Fédérale de Lausanne
Suzanne.verheyden@epfl.ch
Jérôme Krebs, Ecole Polytechnique Fédérale de Lausanne
Andreas Mortensen, Ecole Polytechnique Fédérale de Lausanne

Key Words: microcasting, single crystal, thermally activated deformation, relaxation testing

We present a study on the thermally activated deformation behavior of aluminium (99.99%) microwires. The wires are prepared through a microcasting process based on a combination of lost pattern casting and pressure infiltration. In this manner microwires with a diameter between 7 and 100 µm can be cast. The wires are monocrystalline, have a surface roughness around 30 nm and are amenable for tensile testing. Their monotonic flow depends strongly on orientation, and displays a large number of stochastically distributed strain bursts. Relaxation tests are conducted on microwires with a diameter between 15 and 100 µm. The relaxations consist of continuous relaxations superposed with discrete strain jumps similar to those found during monotonous straining of the wires, proving that initiation of strain jumps can be thermally activated. Mechanical tests are supplemented with microscopic investigations of the metal substructure evolution that accompanies deformation of the wires.