Fall 11-2-2015

Monitoring intracellular component pools to identify steady state in mammalian cell perfusion culture

Daniel Karst
Institute for Chemical and Bioengineering, ETH Zürich, daniel.karst@chem.ethz.ch

Robert Steinhoff
Laboratory of Organic Chemistry, ETH Zürich

Marie Kopp
Institute for Chemical and Bioengineering, ETH Zürich

Renato Zenobi
Laboratory of Organic Chemistry, ETH Zürich

Massimo Morbidelli
Institute for Chemical and Bioengineering, ETH Zürich

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/biomanufact_ii

Part of the _Biomedical Engineering and Bioengineering Commons_

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Integrated Continuous Biomanufacturing II by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Daniel Karst, Robert Steinhoff, Marie Kopp, Renato Zenobi, Massimo Morbidelli, and Miroslav Soos
MONITORING INTRACELLULAR COMPONENT POOLS TO IDENTIFY STEADY STATE IN MAMMALIAN CELL PERFUSION CULTURE

Daniel Karst, Institute for Chemical and Bioengineering, ETH Zürich
daniel.karst@chem.ethz.ch
Robert Steinhoff, Laboratory of Organic Chemistry, ETH Zürich
Marie Kopp, Institute for Chemical and Bioengineering, ETH Zürich
Renato Zenobi, Laboratory of Organic Chemistry, ETH Zürich
Massimo Morbidelli, Institute for Chemical and Bioengineering, ETH Zürich
Miroslav Soos, Institute for Chemical and Bioengineering, ETH Zürich

Key Words: mammalian cells, perfusion culture, steady state, MALDI-TOF MS, intracellular components

Perfusion cultures of mammalian cells are a well-considered alternative in the process development for new biologic products. Stable operation of the culture should eventually lead to a steady state, positively effecting product quality. Although macroscopic variables such as viable cell density, main metabolite or product concentrations are observed constant, little is known about the extent of steady state on intracellular level.

In this study intracellular component pools of CHO cells were monitored at different steady states in perfusion cultures using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). A novel single extraction was used to separate metabolite, lipid as well as protein fractions and quantify their constitution according to associated internal standards. Statistical tools were applied to resolve characteristic steady state attributes.

This approach allowed a comprehensive insight on metabolic as well as protein expression level. Identified features were used to explain differences between the examined states. Gained knowledge can be applied in further process optimization.