Evaluation of a continuous chromatography process through process modeling and resin characterization

Ketki Behere
Massachusetts Bio-manufacturing Center, Department of Chemical Engineering, University of Massachusetts,
ketki_behere@student.uml.edu

Seongkyu Yoon
Massachusetts Bio-manufacturing Center, Department of Chemical Engineering, University of Massachusetts,
seongkyu_yoon@uml.edu

Follow this and additional works at: http://dc.engconfintl.org/biomanufact_ii

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
http://dc.engconfintl.org/biomanufact_ii/119
Evaluation of a Continuous Chromatography process through Process Modeling and Resin Characterization

Ketki Behere, Seongkyu Yoon
Department of Chemical Engineering, University of Massachusetts, Lowell, MA
Integrated Continuous Biomanufacturing (ICB) II, Nov 2015, Berkeley, CA

ABSTRACT

Increased product yield at reduced cost and time has been the driving force of any manufacturing process. However, inevitable increase in future demand for biopharmaceutical drugs, along with intensified competition and stringent regulatory laws have exhibited an imperative need for established platform processes. In this regard, the implementation of continuous processing, in whole or in components, has demonstrated to increase the manufacturing productivity with key impact on speed, cost and facility implications. While, upstream operations have confirmed increased productivity by implementation of continuous processing components, such as perfusion culture, similar adaptation for downstream processes has been limited. We have evaluated a continuous process for separation of a mAb in a closed environment by employing a combined approach of process modelling for continuous chromatography column and characterization of the Protein A resin. The process model utilized several semi-empirical parameters namely Peclet number and effective diffusivity from previous batch processes for continuous separation mAbs, which were appraised for process efficiency. The resin characteristics were assessed for the impact of pH, temperature, pressure and shelf life using the Scanning Electron Microscope (SEM). The results and associated outcome confirmed that this model can be employed with significant impact on the process time. The approach elucidates the conditions required to perform the continuous unit operation for mAb capture step, with indications of alleviating the bottleneck posed by conventional batch processes. Overall, the outcomes of the evaluated approach supports the shift away from conventional fed batch processes to continuous processing for improved biomanufacturing.

OBJECTIVE

✓ The resin usage per manufacturer’s suggestion is 100 caustic cycles.
✓ But in most cases the resin is utilized 10-20% of its suggested use
✓ Problem statement: Poor understanding of the column after multiple uses
✓ Solution: A model to explain the resin usage
✓ Provide predictability for the runs without compromising the column efficiency and qualification

Why is it important?

➢ High specificity of Protein A
➢ High Protein A resin costs
➢ Efficient use of resin is required
➢ Loss of productivity is observed mostly during the regeneration/sanitization step of NaOH wash

Proposed mechanism of NaOH-Protein A interaction: Protein A leaching

Where does it occur?

➢ Resin (agarose/silica/organic polymer) is attached to the Protein A via linker
➢ Caustic (NaOH) is a strong alkali and attacks the linker-Protein A (COO-NH2) bond
➢ Hydrolysis results in Protein A leaching

MODEL DEVELOPMENT

Model Assumptions:

➢ Protein Particle is spherical
➢ Reagent concentration at the interface characterized by r
➢ Diffusion of ions to and from the interface along an average reaction surface is so rapid that the leaching is characterized almost entirely by the "surface reaction"
➢ Leachable Protein A molecules are assumed to be uniformly distributed throughout the resin particles.

Model Equations

Reaction rate at interface

\[\frac{dn}{dt} = -4\pi r^2 C_k \]
\[\frac{dn}{dt} = -4\pi c_k C_d a K_a (r^3 - r_0^3) \]

Number of leachable Protein A particles consumed

\[1 - (1 - R)^{3/2} = \frac{1}{aK_a} \ln(aK_a C_d t + 1) \]

MODEL VALIDATION

Potential Applications

➢ Optimum concentration of NaOH in Continuous chromatography run can be determined to ensure:
 ➢ consistent product quality
 ➢ Efficient resin usage
 ➢ Optimize resin costs
➢ Predictability to the user with data analysis
 ➢ SIMCA Principal Component Analysis (PCA)
 ➢ SIMCA Partial least Square (PLS) model
➢ Protein A leachate minimization
 ➢ Design space analysis with MODDE
 ➢ Determine sweet spot for minimum leaching

ACKNOWLEDGEMENT

• Professor Seongkyu Yoon for the guidance
• Massachusetts Biomanufacturing Centre (MBMC) for the infrastructure