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Motivation for this work

Presidential Energy-Related GHG Targets

* Presidential GHG reduction goals [ e N—

0.9
LJ o o 0_3
 Domestic importance of fossil fuels . ~encneny
SR
€3
. . . . < N 06 * 2020 Goal
— Need fossil fuel options that produce minimal GHGs gs
£2 0'4 4 2050 Goal
" H »” H w g 0. ]
* CLCtechnology has “potential” to achieve DOE goals 5. | Aggressive
GHG Targets *
0.2
Exhibit ES-3 Cost of electricity breakdown comparison 0.1
Cost Fe,0; ($/MWh) CaS0, ($/MWh) el el B L101930 1990 2000 2010 2020 2030 2040 2050 2060
BBR Case 12 Vear
Capital 496 53.4 73.1 ' http://www.eia.gov/environment/emissions/carbon
Fixed 11.3 122 15.7
120 History 2012 Projections
Variable 257 8.4 13.2 I
Maintenance materials 3.2 35 4.7 100 Fossi'Ruels Slgnlﬁcant Role
Water 04 04 0.9
Oxygen carrier makeup * 18.7 11 N/A (exdud":ng biofuels) &
Other chemicals & catalyst 1.9 1.7 6.4
Waste disposal 14 1.7 1.3
Fuel 28.4 30.8 353 e I
Total 1151 104.7 137.3 0
1980 1990 2000 2010 2020 2030 2040

*Fe,03 oxygen carrier makeup: 132 tons/day @ $2,000 per ton; Limestone carrier makeup: 439
tons/day @ $33.5 per ton

Ref: U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL).
Guidance for NETL’s Oxycombustion R&D Program: Chemical Looping Combustion Reference Plant
Designs and Sensitivity Studies. Pittsburgh : s.n., 2014. DOE/NETL-2014/1643

AEO02014 — Early Release
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NETL's Chemical Looping Combustion

What is our end goal?

 Determine if CLC is a feasible technology for FE and worthy of additional
investment/development

— Data and information for strategic decision making
* Ifitis feasible, THEN

— Help developers overcome technical issues

— Help technology be successful

— Ultimately commercialization

—> jobs and growth
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Chemical Looping Reactor: Test Apparatus N=TL

e Fuel: 50 kW,,, Natural Gas
* Fuel Reactor: Bubbling fluidized
bed

N e Air Reactor: Bubbling fluidized
- i bed —— _
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Oxygen Carrier Material: Raw Hematite

Hematite is a “baseline” oxygen carrier

Material: Natural Hematite Ore
Source: Wabush Mine, Canada

Fraction in Band [%]

T deswepe
Particle density 49| g/cm?
Sauter Mean Diam. 210 um
Dso 238 um
Sphericty 0.876 --
Ums (at 298 K) 8.55| cm/s

SEM and light microscopy of Hematite
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Determination of Solids Circulation Rate N=TL

e L-valve cutoff tests were performed to measure the
solids circulation rate
dm A dP * Shutting off L-valve causes solids to build up in fuel
— = —— reactor and exit the air reactor
dt g dt . :
* The pressure drop in the air and fuel reactors can be
AP(t) = P, + (P, — P,)e X(%) fit to an exponential to determine solids flow rate
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Circulation Rate Estimation Correlation

* Correlation created from
riser pressure drop data
and the calculated

800 .o circulation rate from the
L-valve cutoff tests

e Used for finding solids
flow rate during trials
based on riser pressure
drop

* Standard error of data
results in confidence of

Confidence +/- 50 kg/hr

100 . + 50 kg/hr e Compares well with

relation based on solids
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Chemical Looping Test Campaign

Electric preheat
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Test Duration: 3 days, 4 hours and 48 minutes
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Typical Chemical Looping Period
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 Chemical looping tests began by transitioning from combustion mode in the
fuel reactor (replacing air with nitrogen)

* Temperature in Fuel Reactor decays rapidly due to significant heat losses from
the system and the endothermic reactions between CH, and hematite.

* Outlet gas concentration of CH, increases and the concentration of CO,
decreases, and the methane conversion decreases (see Figure 7)
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Performance Parameters

* 12 chemical looping
tests periods

* 12.8 hrs of chemical
looping

e Circulation rates
ranged from 387 to
434 kg/hr

* Carbon balance
ranged from 89 —
99%

* Methane conversion
between 9-41%

Methane Conversion

X _ XCOZ,out
CHy —
XCH4_,in

National Energy

Test

Duration [min]
Average FR
Temperature [C]
Gas residence
Time [s]
Methane Inlet
Concentration
Circulation Rate

[kg/hr ]
Carbon Balance

CH4 Conversion

41 40 59 62 59 61 47 78 70 69 74 66

895 894 892 881 881 880 886 884 936 944 936 922

1.55 1.57 0.81 0.81 0.77 1.58 0.79 1.58 1.47 1.59 0.75 0.71

7% 14% 7% 14% 14% 14% 7% 7% 7% 14% 7% 15%

389 400 434 431 415 387 419 390 398 434 431 411

92% 97% 97% 95% 99% 91% 98% 91% 89% 97% 97% 99%

35% 26% 18% 9% 11% 27% 18% 27% 41% 35% 24% 15%

balance —

Carbon Balance

Mean Gas Residence Time

XCOZ,out + )(CO,out + XCH4,out
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Effect of Fuel Reactor Temperature

* Average
temperature in
fuel reactor has a
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Effect of Inlet Methane Concentration
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Methane Conversion [%]

Gas Residence Time

45
40 @ I 936

* As the gas residence time
increases, the methane
conversion increases.

 The data is scattered
because the temperature

928 . . .
3 g and solid circulation rates
30 905  arechanging between
0 v conditions.
25 912 ®
® ()}
Q.
£
20 904 2
@
15 896
@
10 888

w
o

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Gas Residence Time [s]

# 7% U.S. DEPARTMENT OF

Nati | E
ENERGY Tgcli?r?c?logr;/e[g)t/)oratory



Pearson Correlation Matrix

* Pearson correlation coefficients were
calculated for the various
combination of experimental
parameters

» Strongest relationship identified
between gas residence time and
methane conversion (r,.,.0, =0.81)

* A strong relationship between the
bed temperature and the methane

0.0% conversion is identified(r,.as0n =0.5)

* The inverse relationship between
the inlet methane concentration and
the methane conversion is also
identified (r =-0.38)

Methane Conversion

Gas Residence Time

Methane Concentration -0.094 -0.38 -0.021

Circulation Rate 0.3 -0.45

pearson

Bed Temperature
Methane Conversion
Gas Residence Time

Methane Concentration
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Post Test Analysis N=TL
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e Carrier agglomeration in Fuel Reactor near bubble
caps
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Summary

* Chemical looping tests utilized a natural hematite ore that has a
relatively low reactivity, conducted at temperatures that ranged
from 850 — 1000°C.

 The oxygen carrier circulation rates for these tests were on the
order of 400 kg/hr, and the conversion of methane to carbon
dioxide ranged from 9-41%.

* The fuel reactor temperature and the bulk gas residence time
through the fuel reactor bed are two factors that have a significant
effect on the observed fuel conversion.

 The hematite oxygen carrier material seems to be a very durable
mineral for chemical looping combustion applications, but the
reactivity is very poor.

 There are also some indications that this material could experience

some agglomeration issues if the operating temperature exceeds
1000°C.
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