Final Program

Engineering Conferences International
ECI

Follow this and additional works at: http://dc.engconfintl.org/nanomechtest_v
Part of the Materials Science and Engineering Commons

Recommended Citation

This Article is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Nanomechanical Testing in Materials Research and Development V by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Program
Nanomechanical Testing in Materials Research and Development V
October 4-9, 2015
Albufeira, Portugal
Conference Chair
Dr. Marc Legros
CEMES-CNRS
France
Grande Real Santa Eulalia Resort & Hotel Spa
Praia de Santa Eulalia
(Secondary road from Albufeira town to Olhos D'Agua village)
8200-916 Albufeira
Algarve / Portugal
Telephone +351 289 598 020
Engineering Conferences International (ECI) is a not-for-profit global engineering conferences program, originally established in 1962, that provides opportunities for the exploration of problems and issues of concern to engineers and scientists from many disciplines.

ECI BOARD MEMBERS

Barry C. Buckland, President
Mike Betenbaugh
Nick Clesceri
Peter Gray
Michael King
Raymond McCabe
David Robinson
Eugene Schaefer
P. Somasundaran

Chair of ECI Conferences Committee: Nick Clesceri

ECI Technical Liaison for this conference: Ram Darolia

ECI Executive Director: Barbara K. Hickernell
ECI Associate Director: Kevin M. Korpics

©Engineering Conferences International
Steering Committee

George Pharr, University of Tennessee, USA
Mathias Göken, University of Erlangen-Nurnberg, Germany
Gerhard Dehm, MPIE, Düsseldorf, Germany
Johann Michler, Empa – Materials Science and Technology, Switzerland
Previous conferences in this series

Instrumented Indentation Testing in Materials Research & Development
October 9 – 15, 2005
Crete, Greece
Conference Chairs:
George M. Pharr, University of Tennessee, USA
Carl McHargue, University of Tennessee, USA

Nanomechanical Testing in Materials Research & Development II
October 11 - 16, 2009
Barga, Italy
Conference Chair:
Mathias Goken, University Erlangen-Nurnberg, Germany

Nanomechanical Testing in Materials Research & Development III
October 9 – 14, 2011
Lanzarote, Canary Islands, Spain
Conference Chair:
Dr. Gerhard Dehm, University of Leoben, Austria

Nanomechanical Testing in Materials Research & Development IV
October 6 - 11, 2013
Albufeira, Portugal
Conference Chair:
Johann Michler, EMPA, Switzerland
Conference Sponsors

Alemnis
Anton Paar TriTec SA
CEMES-CNRS
Hysitron, Inc.
Keysight Technologies
Michalex
Nanomechanics, Inc.
NanoMEGAS
NEXT
SURFACE systems + technology
Zeiss
Our principal mission is to enable our customers to evaluate and understand the mechanical performance of their materials on the micro- and nano-scales. With field experts in nanomechanical testing, data acquisition, system integration, and software development on our staff, we are well positioned to provide you with the most accurate results along with leading edge characterization.

By offering the highest performing and most capable mechanical characterization microprobe on the market, at a price that is easy to afford, the iNano offers our customers the capacity to perform accurate testing on a wide range of materials, in a wide range of lab settings, while remaining true to the principle of getting more, for less.

The NanoFlip is designed to be the most versatile mechanical properties testing instrument on the market today by offering researchers the option to use the tool both in in-situ environments as well as in ambient settings depending on the demands of the experiment.

The Nanomechanics InSEM HT provides 800°C isothermal heating of the tip and sample for the InSEM in-situ mechanical properties microprobe. Independent control of the tip and sample temperatures is integrated with multi-location thermocouple feedback, active cooling, and of course the precision and dynamic range of the mechanical test system itself.
Nanoindentation Testers
for Hardness, Elastic Modulus, Creep, Stress-Strain, Fracture Toughness ...

- Unique top surface referencing technique
- Highest nanoindenter frame stiffness
- High-temperature, humidity and vacuum options
- Complies with ISO 14577 and ASTM E2546

For more information, www.anton-paar.com
Overcome Today’s Most Complex Material Challenges
Hysitron takes great pride in offering the most comprehensive suite of quantitative nanomechanical test instruments in the market. Our industry-leading technologies are specifically designed to enable new frontiers in nanoscale materials characterization and materials development.

Standalone Instruments
Maximum Performance Instruments for Quantitative Mechanical & Tribological Characterization at the Nanoscale and Microscale

Quantitative In-Situ Nanomechanics
Quantitative In-Situ Nanomechanical Test Instruments Interfaced with Powerful SEM, TEM, XRM, and AFM Microscopy Techniques
Smart and Speedy.

Keysight Nano Indenter G200 with *Ultra-fast* Express Test

- Complete up to 100 indents at 100 different surface sites in 100 seconds!
- Rapidly evaluate Young's modulus and hardness on a variety of materials
- Quickly generate quantitative maps of mechanical properties
- Perform area-function calibration in a matter of minutes

(Left) Surface of a lithium/polymer battery cathode; grid identifies indentation sites. (Right) Elastic modulus, in GPa, obtained via Express Test.
The moment you realize you can achieve *in situ* mechanical testing at the nanoscale.

Nanoscale 3D X-ray microscopy from ZEISS.

Compressive loading of a porous elastomer: Uncompressed (left), compressed (center), decompressed (right)

Scan here to download our tech note "*In Situ Observation of Mechanical Testing at the Nanoscale*” and get details on relevant conference talks.

www.zeiss.com/microscopy
Sunday, October 4, 2015

14:00 - 15:30 **Short Course: Digital Image Correlation**
Chris Eberl, Karlsruhe Institute of Technology and Marco Sebastiani, Roma TRE University, Italy

16:30 - 18:00 **Short Course: Fracture and adhesion - An introduction (with comments on size effects)**
Etienne Barthel, SIMM/ESPCI, France

17:00 - 19:00 Conference check-in

18:15 - 18:30 **Opening Remarks**
Conference Chair, Marc Legros, CEMES-CNRS, France, and ECI Technical Liaison, Ram Darolia

18:30 - 19:00 **Invited**
Measuring surface dislocation nucleation in defect-scarce nanostructures
Daniel S. Gianola, University of Pennsylvania, USA

19:00 - 20:00 Welcome Reception

20:00 - 21:30 Dinner

NOTES

- Technical Sessions will be held in Sala Real.
- Poster Sessions will be held in the Real Foyer.
- Most meals will be in the Restaurante do Real. Changes will be announced.
- The conference banquet on Thursday will be held in the Restaurante Santa Eulalia.
- Audiotaping, videotaping and photography of presentations are prohibited.
- Speakers – Please leave at least 5 minutes for questions and discussion.
- Please do not smoke at any conference functions.
- Turn your cellular telephones to vibrate or off during technical sessions.
- After the conference, ECI will send an updated participant list to all participants. Please check your listing now and if it needs updating, you may correct it at any time by logging into your ECI account.
- Please do not smoke at any conference functions.
- Please write your name in the front of this program booklet so it can be returned if misplaced.
Monday, October 5, 2015

07:30 - 09:00 Breakfast Buffet

Invited

09:00 - 09:30 Grain size strengthening – Just another length-scale effect?
Andy Bushby, Queen Mary University of London, United Kingdom

Session 1 - Chair M. Legros

09:30 - 09:50 Mechanical scaling behavior of nanoporous gold based on 3D structural analysis and indentation-based testing
Erica T. Lilleodden, Helmholtz-Zentrum Geesthacht, Germany

09:50 - 10:10 A comprehensive study on the deformation behavior of ultra-fine grained and ultra-fine porous Au at elevated temperatures
Alexander Leitner, Montanuniversität Leoben, Austria

10:10 - 10:30 Size effect on fracture toughness of gold thin films studied by bulge testing
Eva Preiß, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

10:30 - 11:00 Coffee Break / Networking

Invited

11:00 - 11:30 Probing grain boundary mechanisms by in-situ TEM
Frédéric Mompiou, CEMES-CNRS, France

Session 2 - Chair K. Hemker

11:30 - 11:50 Interface fracture resistance of thin films at elevated temperatures
Rafael Soler, Max-Planck-Institut für Eisenforschung, Germany

11:50 - 12:10 Characterization of mechanical behavior of nanocrystalline layer induced by SMAT using micro-pillar compression technique coupled with finite element analysis
Yangcan Wu, University of Technology of Troyes, France

12:10 - 12:30 Fracture strength testing at the micron-scale on an ultra-fine grained W-Cr_10-Ti_2 alloy
Moritz Lessmann, University of Manchester/Culham Centre for Fusion Energy, United Kingdom

12:30 - 12:50 High temperature mechanical properties of Ni-base superalloy and diffusion aluminide bond coating: An in-situ SEM nanoindentation study
Sanjit Bhowmick, Hysitron, Inc., USA
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:00 - 14:30</td>
<td>Lunch Buffet</td>
</tr>
<tr>
<td>14:30 - 16:00</td>
<td>Free time / ad hoc sessions</td>
</tr>
<tr>
<td>16:00 - 16:30</td>
<td>Afternoon coffee / Networking</td>
</tr>
</tbody>
</table>

Invited

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30 - 17:00</td>
<td>Deformation mechanisms of twinned nanoparticles and nanowires</td>
</tr>
<tr>
<td></td>
<td>Erik Bitzek, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany</td>
</tr>
</tbody>
</table>

Session 3 – Chair S. Van Petegem

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00 - 17:20</td>
<td>Free energy function of dislocation densities by large scale atomistic simulations</td>
</tr>
<tr>
<td></td>
<td>Christoph Begau, Ruhr-Universität Bochum, Germany</td>
</tr>
<tr>
<td>17:20 - 17:40</td>
<td>Size-dependent mechanical properties of crystalline nanoparticles</td>
</tr>
<tr>
<td></td>
<td>Dan Mordehai, Technion, Israel</td>
</tr>
<tr>
<td>17:40 - 18:10</td>
<td>Coffee Break / Networking</td>
</tr>
<tr>
<td>18:10 – 18:30</td>
<td>In-situ nanomechanical testing using X-ray microscopy</td>
</tr>
<tr>
<td></td>
<td>William M. Harris, Carl Zeiss X-ray Microscopy, Inc., USA</td>
</tr>
</tbody>
</table>

Invited

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:30 - 19:00</td>
<td>Insights into dislocation grain-boundary interaction by X-ray μLaue diffraction</td>
</tr>
<tr>
<td></td>
<td>Christoph Kirchlechner, Max-Planck-Institute für Eisenforschung, Germany</td>
</tr>
<tr>
<td>19:00 - 19:30</td>
<td>Poster Preview 1 – Chairs: V. Maier, G. Pharr</td>
</tr>
<tr>
<td>19:45 - 21:00</td>
<td>Dinner</td>
</tr>
<tr>
<td>21:00 - 23:00</td>
<td>Poster Session and Social Hour</td>
</tr>
</tbody>
</table>
Tuesday, October 6, 2015

07:30 - 09:00 Breakfast Buffet

Invited

09:00 - 09:30 Thermally activated processes in materials probed by nanoindentation - challenges, solutions, and insights
Verena Maier, Austrian Academy of Sciences, Austria

Session 4 – Chair C. Tromas

09:30 - 09:50 Revealing dislocation structure around and underneath indentations in (001) strontium titanate single crystals at room temperature and 350° C
Karsten Durst, Technical University of Darmstadt, Germany

09:50 - 10:10 High temperature indentation creep and nanoindentation testing of superalloys and TiAl alloys
Mathias Göken, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany

10:10 - 10:30 Nanoindentation cartography in Al/Al-Cu-Fe composites: Correlation between chemical heterogeneities and mechanical properties
Christophe Tromas, Institut Pprime - Université de Poitiers, France

10:30 - 11:00 Coffee Break / Networking

Invited

11:00 - 11:30 About the plastic response of silicate glasses at the micronscale
Guillaume Kermouche, Ecole des Mines de Saint-Etienne, France

Session 5 – Chair J. Molina-Aldareguia

11:30 - 11:50 High-temperature small-scale fracture mechanics and plasticity of a hard-coating system
James P. Best, EMPA, Switzerland

11:50 - 12:10 Size effects and deformation mechanisms in diamond and silicon
Jeffrey M. Wheeler, ETH Zurich, Switzerland

12:10 - 12:30 Toward the understanding of the brittle to ductile transition at low size in silicon: Experiments and simulations
Sandrine Brochard, Institut Pprime, France

12:30 - 12:50 Variable temperature ultra-nanoindentation system: Elevated and cryogenic temperature measurements
Marcello Conte, Anton Paar TriTec SA/EMPA, Switzerland

12:50 - 14:30 Lunch Buffet

14:30 - 16:00 Free time / ad hoc sessions
16:00 - 16:30 Afternoon Coffee / Networking

Invited

16:30 - 17:00 From micro-cantilever testing to deformation patterning in HCP polycrystals
Angus Wilkinson, University of Oxford, United Kingdom

Session 6 – Chair F. Mompiou

17:00 - 17:20 Boundary motion coupled with tensile and compressive deformation: TEM observation of twinning-like lattice reorientation in Mg micropillars
Evan Ma, Johns Hopkins University, USA

17:20 - 17:40 Understanding rate sensitivity in dual phase titanium alloys – a combined experimental and computational micro-pillar study
Tea-Sung (Terry) Jun, Imperial College London, United Kingdom

17:40 - 18:10 Coffee Break / Networking

18:10 – 18:30 Mechanisms of plastic deformation of magnesium matrix nanocomposites elaborated by friction stir processing
Camila Mallmann, SIMAP-GPM2, France

Invited

18:30 - 19:00 Multiscale characterization of the micromechanics of pure Mg
Jon Molina-Aldareguia, IMDEA Materials Institute, Spain

19:00-19:30 An improved micromechanical method for investigating the mechanical properties of poly-silicon membranes
Krish Narain, Keysight Technologies, Böblingen, Germany

20:00 Dinner on your own
Wednesday, October 7, 2015

07:30 - 09:00 Breakfast Buffet

Session 7 – Chair E. Ma

09:30 - 09:50 Importance of dynamics in small scale mechanical testing: Fast constant strain rate and ballistic testing
 Warren Oliver, Nanomechanics, Inc., USA

09:50 - 10:10 Effect of hydrogen on the nucleation and motion of dislocations
 Mohammad Zamanzade, Saarland University, Germany

10:10 - 10:30 Effect of hydriding on nanoscale plasticity mechanisms in nanocrystalline palladium thin films
 Behnam Aminahmadi, University of Antwerp- EMAT, Belgium

10:30 - 11:00 Coffee Break / Networking

Invited

11:00 - 11:30 In-situ observation of the onset of plastic deformation by prismatic loop emission
 Sang Ho Oh, POSTECH, South Korea

Session 8 – Chair A. Bushby

11:30 - 11:50 In-situ micropillar compression of bone shows remarkable strength and ductility but no damage
 Jakob Schwiedrzik, EMPA Swiss Federal Laboratory for Materials Science and Technology, Switzerland

11:50 - 12:10 Nanoindentation-based mechanical spectroscopy of wood cell walls
 Joseph Jakes, USDA Forest Service, USA

12:10 - 12:30 How to perform nanoindentation in difficult conditions? Applications to ultra soft materials and temperature environment
 Michel Fajfrowski, Michalex, France

12:30 - 12:50 Performance of a single interface in a biocomposite structure measured using microcantilever modulation experiment
 Igor Zlotnikov, Max Planck Institute of Colloids and Interfaces, Germany

13:00 - 19:00 Boxed Lunch and excursion

19:00 - 20:00 Poster Preview 2 – Chairs: V. Maier, G. Pharr

20:00 - 21:30 Dinner

21:30 - 23:30 Poster Session and Social Hour
Thursday, October 8, 2015

07:30 - 09:00 Breakfast Buffet

Invited

09:00 - 09:30 Mechanical properties of lithiated silicon: A candidate electrode for lithium ion batteries
William D. Nix, Stanford University, USA

Session 9 – Chair D. Gianola

09:30 - 09:50 Nanoindentation induced deformation anisotropy in WC, β-Si₃N₄ and ZrB₂ crystals
Tamás Csanádi, Slovak Academy of Sciences, Slovakia

09:50 - 10:10 Hydrogen effects on nanoindentation behavior of metallic glass ribbons
Yakai Zhao, Hanyang University, South Korea

10:10 - 10:30 In-situ strain softening and strain hardening of natural geomaterials on the microscale
Younane Abousleiman, University of Oklahoma, USA

10:30 - 11:00 Coffee Break / Networking

Invited

11:00 - 11:30 Probing the initial stages of plasticity with nanoindentation
Easo George, Ruhr University Bochum, Germany

Session 10 – Chair J. Michler

11:30 - 11:50 Underpinning and benchmarking multi-scale models with micro- and nano-scale experiments
Kevin Hemker, Johns Hopkins University, USA

11:50 - 12:10 Anisotropy of ultrafine-lamellar and nanolamellar pearlitic structures revealed by in-situ micro compression testing
Marlene Kapp, Erich Schmid Institute of Materials Science, Austria

12:10 - 12:30 Nano-scale behavior of irradiated nano-structured alloys
David E.J Armstrong, University of Oxford, United Kingdom

12:30 - 12:50 Probing nanoscale damage gradients in irradiated materials with spherical nanoindentation
Nathan Mara, Los Alamos National Laboratory, USA
Thursday, October 8, 2015 (continued)

13:00 - 14:30 Lunch Buffet

14:30 - 16:00 Free time / ad hoc sessions

Invited

16:30 - 17:00 **Length-scale dependent deformation behavior of nanolayered Cu-based micropillars**
 Gang Liu, Xi'an Jiaotong University, China

Session 11 - Chair C. Kirchlechner

17:00 - 17:20 **Transition in plastic deformation of nanolayered thin films: Role of interfaces and temperature**
 Rejin Raghavan, Max-Planck-Institut für Eisenforschung, Germany

17:20 – 17:50 Coffee Break / Networking

17:50 - 18:10 **How residual stresses affect the fracture properties of layered thin films**
 Daniel Kiener, Montanuniversität Leoben, Austria

18:10 - 18:30 **In-situ nano-mechanical tests in the light of μLaue diffraction**
 Thomas W. Cornelius, CNRS, IM2NP (UMR 7334), France

Invited

18:30 - 19:00 **In-situ mechanical testing at the synchrotron**
 Steven Van Petegem, PSI, Switzerland

20:00 - 22:00 Conference Banquet
07:30 - 09:00 Breakfast Buffet

Invited
09:00 - 09:30 Cracking in brittle materials during nanoindentation: New insights gained from cohesive zone finite element modeling
George M. Pharr, University of Tennessee and Oak Ridge National Laboratory, USA

Session 12 - Chair E. George
09:30 - 09:50 Extraction of crystal plasticity parameters of IN718 using high temperature micro-compression
Bin Gan, IMDEA Materials Institute, Spain

09:50 - 10:10 Fracture toughness measurement with microscopic chevron-notched specimens
Goran Zagar, École Polytechnique Fédérale de Lausanne, Switzerland

10:10 - 10:30 In-situ fracture tests of brittle materials at the microscale
Giorgio Sernicola, Imperial College London, United Kingdom

10:30 - 11:00 Coffee Break / Networking

Invited
11:00 - 11:30 Some recent advances in nanomechanical testing: High strain rates, variable temperatures, fatigue and stress relaxation, combinatorial experimentation
Johann Michler, EMPA, Switzerland

Session 13 – Chair G. Liu
11:30 - 11:50 Limits of determining stress states by FIB method due to Ga implantation
Diana Courty, ETH Zurich, Switzerland

11:50 - 12:10 Studying fatigue damage evolution at grain boundaries using micro mechanical test methods
Christian Motz, Saarland University, Germany

12:10 - 12:30 Accessing the phase transformation and deformation behavior of metastable stainless steels through cyclic nanoindentation
Ina Sapezanskaia, UPC, Spain

12:30 - 12:50 Thermo-mechanical characterization of polymer samples using nanoindentation - From bulk characterization to thin film properties
Dennis Bedorf, SURFACE, Germany

13:00 - 14:00 Lunch Buffet and departures
1. **A new dynamic module for in-situ nanomechanical testing at high strain rate**
Gaylord Guillonneau, Ecole Centrale de Lyon/EMPA, Switzerland

2. **High temperature nanoindentation testing of amorphous silicon carbonitride thin films**
Radim Ctvrtlik, Palacky University, Czech Republic

3. **Deformation behavior of bulk metallic glasses produced via Severe Plastic Deformation and the influence of a second phase**
Lisa Kraemer, Austrian Academy of Sciences, Austria

4. **The measurement of viscosity of ultrathin polymer films.**
Dariusz Jarząbek, Institute of Fundamental Technological Research, Poland

5. **The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites.**
Dariusz Jarząbek, Institute of Fundamental Technological Research, Poland

6. **Using in-situ microLaue diffraction to understand plasticity in MgO**
Ayan Bhowmik, Imperial College London, United Kingdom

7. **A comparison of nanotribology and nanoindentation**
Steffen Brinckmann, Max-Planck-Institut für Eisenforschung, Germany

8. **Orientation dependence of dislocation transmission through twin-boundaries studied by in situ µLaue diffraction**
Nataliya Malyar, Max-Planck-Institut für Eisenforschung GmbH, Germany

9. **Fracture behavior of high strength pearlitic steel wires**
Bernhard Völker, Montanuniversität Leoben, Austria

10. **Quantification of mechanical properties gradient by nano-indentation and micro-compression testing on mechanically-induced transformed surfaces**
David Tumbajoy Spinel, Ecole des Mines de Saint-Etienne, LGF UMR5307 CNRS, France

11. **Dislocation dipoles and the nucleation of cracks in silicon nanopillars**
Jacques Rabier, DPMM, Institut P’, CNRS-Université de Poitiers-ENSMA, France

12. **Combining in situ tensile testing and orientation microscopy in the SEM: A MEMS based setup for studying time dependent deformation of thin films by TKD and STEM**
Jan Philipp Liebig, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

13. **Development and application of an in-situ nanoindenter coupled with electrical measurements**
Solène Comby, University of Grenoble Alpes/SIMaP lab, France
14. Comparison of in situ micromechanical time dependent plasticity techniques: micropillar compression, nanoindentation and micro-tensile tests
 Juri Wehrs, EMPA, Switzerland

15. EBSD investigation of microstructure refinement from impact-based surface treatments
 Xavier Maeder, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Switzerland

16. Investigating the plastic deformation of Molybdenum from -196°C to 950°C using nano- and micro-indentation
 Katherine Plummer, Oxford University, United Kingdom

17. Ultra small scale high cycle fatigue testing by micro-cantilevers
 Jicheng Gong, University of Oxford, United Kingdom

18. A direct comparison of high temperature nanoindentation and tensile creep measurements for aluminum
 Warren Oliver, Nanomechanics Inc., USA

19. Nanoindentation, micropillar compression and nanoscratch testing of ZrB2 grains
 Ján Dusza, Slovak Academy of Sciences, Slovakia

20. Study of sub-surface ion-implanted hardened layers with depth-sensing indentation
 Alexey Useinov, Technological Institute for Superhard and Novel Carbon Materials, Russia

21. An Improved method for point deflection measurements on rectangular membranes
 Benoit Merle, University Erlangen-Nürnberg (FAU), Germany

22. Annealing effect on coherent-incoherent interface tri-component nanoscale metallic multilayer thin films
 Aidan A. Taylor, EMPA, Switzerland

23. Obtaining mechanical properties of superelastic materials from microindentation data
 Dmitry Zhuk, National Research Nuclear University «MEPhI», Russia

24. Mechanical response of face-centered cubic metallic nanospheres under uniaxial compression
 Selim Bel Haj Salah, Institut Pprime, France

25. Micromechanical behavior of thermal barrier coatings after isothermal oxidation
 Carlos Serna, Universidad Nacional de Colombia, Colombia

26. Effects of lithiation on the fracture toughness and mechanical properties of LiMn2O4 cathode battery materials
 Marco Sebastiani, Roma TRE University, Italy

27. Chemomechanical effects in thin film and bulk oxides
 Steve Bull, Newcastle University, United Kingdom
28. Influence of temperature on the deformation behavior of single-and bi-crystal microbending beams
 Jorge Rafael Velayarce, Saarland University, Germany

29. Irradiation-induced ductilization in the Zr-based metallic glasses
 Jaewon Heo, Korea Advanced Institute of Science and Technology, South Korea

30. Nanomechanical testing of ODS steels irradiated with 1 MeV/amu heavy ions
 Katerina Kornieieva, Joint Institute for Nuclear Research (JINR), Russia

31. Can it be measured - Fracture Toughness from Repetitive Nano-impacts Test?
 Emilio Frutos Torres, Czech Technical University Prague, Czech Republic

32. Environmentally controlled modulus mapping of biocomposite materials employing the concept of effective mass
 Bernd Bayerlein, Max Planck Institute of Colloids and Interfaces, Germany

33. Elevated temperature microcompression transient testing of nanocrystalline materials: Creep, stress relaxation and strain rate jump tests
 Gaurav Mohanty, EMPA, Switzerland

34. Combining nanoindentation with complementary techniques for mechanical and structural characterization of ultra uow-k (ULK) thin films
 André Clausner, Fraunhofer IKTS-MD, Germany

35. A new technique to measure the true contact area using nanoindentation testing
 Gaylord Guillonneau, Ecole Centrale de Lyon/EMPA, Switzerland

36. Nanotwin governed toughening mechanism in hierarchically structured materials
 Sungmin Moon, POSTECH, South Korea

37. Fracture behavior of brittle ceramics at the nanoscale
 Dahye Shin, KAIST, South Korea

38. Numerical simulations of twin formation and extension in thin face-centred cubic metallic films
 Sandrine Brochard, Institut Pprime, France

39. Layer orientation and size effects on micropillar compression of Al/SiC nanolaminates
 Lingwei Yang, IMDEA Materials Institute, Spain

40. Microscopic three-point bending test to probe plate-like silicon particles from AlSi alloys
 Martin G. Mueller, École Polytechnique Fédérale de Lausanne, Switzerland

41. Measuring the fracture toughness of Titanium Carbide reinforcements at the micron-scale
 Lionel Michelet, École Polytechnique Fédérale de Lausanne, Switzerland
42. **Size dependent deformation of beta brass**
Oscar Torrents Abad, INM - Leibniz Institute for New Materials, Germany

43. **A universal characterization method on viscous materials using depth sensing indentation**
Abdul Shah, University Of Central Lancashire, United Kingdom

44. **Thermally activated deformation in cast aluminium microwires**
Suzanne Verheyden, Ecole Polytechnique Fédérale de Lausanne, Switzerland

45. **Measuring the strength of brittle microscopic spheres by means of compression tests**
Václav Pejchal, École Polytechnique Fédérale de Lausanne, Switzerland

46. **Indentation behavior of superelastic hard carbon**
Olga Chernogorova, Baikov Institute of Metallurgy and Materials Science (IMET), Russia

47. **Micromechanical testing of ion-irradiated ferritic/martensitic steels**
Anna Kareer, University of Oxford, United Kingdom

48. **Orientation-depedent mechanical behaviour of electrodeposited copper with nanoscale twins**
Maxime Mieszala, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Switzerland

49. **Deformation and fatigue behavior measurement of thin films undergoing thermo-mechanical loading at high strain rates – A novel test setup**
Johannes Zechner, KAI GmbH, Austria

50. **Length-scale enabled quantification of surface damage by indentation: A case study separating the components of contact response due to indentation size, residual stress, and damage caused by surface machining and grinding**
Nigel Jennett, Coventry University, United Kingdom

51. **High-temperature fracture test using chevron-notched tungsten microcantilevers**
Bo-Shiuan Li, University of Oxford, United Kingdom

52. **Fundamental nanomechanic investigations using combinatorial deposition techniques**
Rachel Schoeppner, EMPA, Switzerland

53. **Diffusion-based deformation in elevated temperature micropillar compression of Mg-Nb multilayers**
Keith B. Thomas, EMPA, Switzerland

54. **Mechanical and optical properties of silicon nitride thin films on glass**
Lukas Simurka, ŞIŞECAM Science and Technology Center, Turkey

55. **Pushing the envelope for high temperature nanoindentation measurements**
Marcello Conte, Anton Paar/EMPA, Switzerland
56. **A new designed 1200 °C high temperature instrumented nano indentation probe to investigate the mechanical behavior of materials**
 Michel Fajrowski, Michalex, France

57. **Identification of in situ lignin strength based on micropillar compression and micromechanical modeling of wood cell walls**
 Johann Jakob Schwiedrzik, EMPA Swiss Federal Laboratories for Materials Science and Technology, Switzerland

58. **In situ high temperature TEM tensile testing of pseudo single crystalline Si for PhotoVoltaic applications**
 Arthur Lantreibecq, CEMES-CNRS, France

59. **High-temperature nano-impact testing of a hard-coating system**
 James P. Best, EMPA, Switzerland

60. **Testing of nanostructure within active carbons particles**
 Bronislaw Buczek, AGH-University of Science and Technology, Poland