Fall 11-2-2015

BHK cells physiological response to spin-filter stress condition

Bruno Labate
University of Sã o Paulo, blvcosta@gmail.com

Aldo Tonso
University of Sã o Paulo

Follow this and additional works at: http://dc.engconfintl.org/biomanufact_ii

Part of the [Biomedical Engineering and Bioengineering Commons](http://dc.engconfintl.org/biomanufact_ii)

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Integrated Continuous Biomanufacturing II by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Introduction

- Perfusion cultivation strategy provides both high cell concentrations in a small volume bioreactor and low product’s residence time, allowing high productivity and almost instantaneous recovery of the product.
- BHK-21 cells were cultivated in batch and perfusion modes using an internal spin-filter as the cell-retaining device and the physiological parameters of cells cultivated in perfusion revealed a metabolic shift similar to that observed towards stressful conditions.
- Experiments were carried out in a Biostat B bioreactor (Sartorius, AG, Germany) stirred at 80 rpm with 1,5 L working volume, IMDM/DMEM/5% FBS medium, 50% air sat. dissolved oxygen, pH and temperature controlled at 7,2 and 37°C respectively.

Batch and perfusion runs

- The Batch run was used to collect preliminary physiological data.
- The Perfusion run lasted 48 days and can be divided in **batch**, **continuous** (withdrawal tube draining medium from **outside the spin-filter**), and **perfusion phases** (withdrawal tube draining medium from **inside the spin-filter**).
- The batch phase of the Perfusion run was used to calculate physiological parameters to compare with parameters obtained in the Batch run.

Results

- Specific rates of glucose q_{GLC} and glutamine q_{GLN} consumption, in the presence of the spin-filter, were 84% and 32% **higher**, respectively.
- Specific rates of lactate q_{LAC} and ammonium q_{NH_4} production, in the presence of the spin-filter, were 78% and 102% **higher**, respectively.

Discussion

- It is suggested that higher substrate consumption and metabolites production can be associated with stress factors.
- BHK21/C13, cultivated up to 24 h, under shear stress varying from **0.75 to 1.0 Pa**, had their **viability** and **morphology** affected1.
- The wall shear stress caused by a rotating filter (100 rpm) vary from **1.57 to 1.67 Pa** depending on the recirculation rate2. Nevertheless, that shear stress is not the only stress factor present in a bioreactor cultivation.
- Presented data suggest a correlation between cell stress and the presence of a spin-filter.

References