5-26-2016

CFD-DEM simulation of nanoparticle agglomerates fluidization with a micro-jet

Daoyin Liu
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, China; Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, The Netherlands, dyliu@seu.edu.cn

Berend G. M. van Wachem
Thermofluids Division, Department of Mechanical Engineering, Imperial College London, United Kingdom

J. Ruud van Ommen
Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, The Netherlands

Robert F. Mudde
Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, The Netherlands

Xiaoping Chen
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, China

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv

Part of the Chemical Engineering Commons

Recommended Citation
CFD-DEM simulation of nanoparticle agglomerates fluidization with a micro-jet

Daoyin Liu¹, Berend van Wachem³, Robert F. Mudde², Xiaoping Chen¹
J. Ruud van Ommen²
1 Southeast University, China
2 Delft University of Technology, The Netherlands
3 Imperial College London, United Kingdom
*This work was performed at Delft University of Technology
1. Nanoparticle fluidized bed

Application: Atomic layer deposition (ALD) in a fluid bed is a new way of coating nanoparticles at a large scale

Valdesueiro et al., Materials 8 (2015) 1249
2. Strategy

Nanoparticles are agglomerated with a multi-stage structure

de Martín et al.. Langmuir 30 (2014) 12696.

In case of too strong agglomeration: microjet

~20% gas, high velocity

~80% gas, low velocity

The simple agglomerates are represented by DEM particles with cohesive and plastic properties.
2. Strategy

Step 1
Adhesive CFD-DEM model

- Modify conventional CFD-DEM model for nanoparticle agglomerate fluidized bed; Test/validate model

Adhesive CFD-DEM model

= conventional CFD-DEM + adhesive contacts + drag force scaling

Step 2
Agglomerate analysis method

- Develop method to identify agglomerates;
- Characterize agglomerates (probability distribution of size, density, packing, fractal dimension et al.)

Step 3
Application micro-jet FB

- Use the above methods to analyze effect of micro-jet on agglomerate dynamics
3. **Adhesive contact model**: predict contact behavior curve

\[
Bo_{vdw} = \frac{F_{vdw0}}{mg}
\]

Normal impact

\[d_p = 40 \mu m, Bo_{vdw} = 100, V_0 = 2 cm/s\]

stick case

\[V_0 = 4 cm/s\]

bounce case

It can predict the stick and bounce collision behavior, giving the particle properties (size, density, stiffness, plastic, cohesive force, et al.) and impact velocity.
3. Test of adhesive DEM model

Angle of repose

- $Bo_{vdw} = 0$
- $Bo_{vdw} = 10$
- $Bo_{vdw} = 20$
- $Bo_{vdw} = 50$

$(Bo_{vdw} = F_{vdw0}/mg)$

Agglomerate formation

- $Bo_{vdw} = 0$
- $Bo_{vdw} = 20$
- $Bo_{vdw} = 40$
- $Bo_{vdw} = 100$
3. Test of adhesive CFD-DEM model: fluidized bed

Particle flow pattern under different $Bo_{vdw} = F_{vdw0}/mg$

$Bo_{vdw} = 0$

$Bo_{vdw} = 20$

$Bo_{vdw} = 50$

$Bo_{vdw} = 100$

Averaged pressure gradient along the bed height

\(d_p = 40\mu m, \rho = 250kg/m^3\)

\(k_{n,unload} = 2\ N/m, \psi_p = 0.2\)

\(F_{vdw0}/mg\)

- 0
- 20
- 50
- 100
4. Visualization of (complex) agglomerate breakage
4. Visualization of agglomerate breakage

SiO₂; Bo = 20; Ug = 2 cm/s

TiO₂; Bo = 20; Ug = 2 cm/s

TiO₂; Bo = 20; Ug = 4 cm/s

TiO₂; Bo = 5; Ug = 4 cm/s
4. Statistics of agglomerates

For (complex) agglomerates: statistics show that the averaged coordination number of agglomerates is around 3.0, packing fraction around 0.2~0.3, and fractal dimension around 1.9~2.3.
5. Effect of micro-jet: general flow pattern

schematic of micro-jet in fluidized bed

<table>
<thead>
<tr>
<th></th>
<th>$F_{vdw,0}/mg=20$</th>
<th>$F_{vdw,0}/mg=50$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jet OFF</td>
<td>jet ON</td>
</tr>
<tr>
<td>vdw20jet00</td>
<td>0.00 s</td>
<td>0.00 s</td>
</tr>
<tr>
<td>vdw20jet36</td>
<td>0.00 s</td>
<td>0.00 s</td>
</tr>
<tr>
<td>vdw50jet00</td>
<td>0.00 s</td>
<td>0.00 s</td>
</tr>
<tr>
<td>vdw50jet36</td>
<td>0.00 s</td>
<td>0.00 s</td>
</tr>
</tbody>
</table>
5. Effect of micro-jet: agglomerate

Agglomerate breakage with time for different cases

The jet can promote agglomerate breakage.

- The statistics of the agglomerate properties, e.g., diameter, fractal dimension, packing density, can be obtained directly from the agglomerate analysis.
- The fraction of larger agglomerates is decreased when the jet is turned ON.
Conclusions

(1) Adhesive CFD-DEM model developed for simulating nanoparticle agglomerate fluidization.

(2) Model tested against: normal impact, repose of angle, fluidization.

(3) Agglomerate breakage/reunion is visualized.

(4) Preliminary study on effect of micro-jet on fluidization: The micro-jet can promote overall solid mixing, as well as complex-agglomerate breakage.

(5) This is an on-going study on “micro-jet”. Comments welcome!