A FLUORESCENT HYDROGEL-BASED FLOW CYTOMETRY SCREENING PLATFORM FOR HYDROLYTIC ENZYMES

Volkan Besirlioglu, Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
v.besirlioglu@biotec.rwth-aachen.de

Christian Pitzler, Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany

Georgette Wirtz, Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany

Ljubica Vojcic, Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany

Stephanie Hiltl, DWI – Leibniz Institut für Interaktive Materialien, Aachen, Germany

Alexander Böker, DWI – Leibniz Institut für Interaktive Materialien, Aachen, Germany

Ronny Martinez, Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany

Ulrich Schwaneberg, Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany

Key Words: Directed evolution, hydrolase, high-throughput screening, flow cytometer, hydrogel

In directed evolution experiments and enzyme discovery, screening throughput plays a key role. In this study, for the first time a high-throughput screening platform based on a coupled reaction of glucose oxidase and a hydrolase (Yersinia mollaretii phytase [YmPh]) is described. The coupled reaction produces hydroxyl radicals through Fenton's reaction, which initiate a poly(ethylene-glycol)-acrylate-based polymerization incorporating a fluorescent monomer. Consequently, a fluorescent hydrogel is formed around Escherichia coli cells expressing active YmPh. We validate the performance of the fluorescent polymer shell (fur-shell) technology by directed phytase evolution that yielded variant M1 with 97 U/mg increased specific activity compared to YmPh wild type (315 U/mg). Thus, fur-shell technology represents a rapid and nonlaborious way of identifying the most active variants from vast populations, as well as a platform for generation of polymer-hybrid cells for biobased interactive materials.

References:

Figure 1 – Coupled YmPh/glucose oxidase (GOx) reaction leads to a fluorescent hydrogel shell formation