Engineering Conferences International ECI Digital Archives

Fluidization XV

Proceedings

5-26-2016

Micro/Meso simulations of a fluidized bed with heat transfer

Florian Euzenat *IFP Energies Nouvelles; Fluid Mechanics Department; Rond-Point de l'échangeur de Solaize, 69360, Solaize, France,* florian.euzenat@ifpen.fr

Anthony Wachs University of British Columbia; Departments of Mathematics and Chemical & Biochemical Engineering; Vancouver BC, Canada

Abdelkader Hammouti IFP Energies Nouvelles; Fluid Mechanics Department; Rond-Point de l'échangeur de Solaize, 69360, Solaize, France

Pascal Fede Institut de Mécanique des Fluides de Toulouse; Spray, Particles and Combustion Group; Allée du Professeur Camille Soula, 31400 Toulouse, France

Eric Climent Institut de Mécanique des Fluides de Toulouse; Spray, Particles and Combustion Group; Allée du Professeur Camille Soula, 31400 Toulouse, France

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Florian Euzenat, Anthony Wachs, Abdelkader Hammouti, Pascal Fede, and Eric Climent, "Micro/Meso simulations of a fluidized bed with heat transfer" in "Fluidization XV", Jamal Chaouki, Ecole Polytechnique de Montreal, Canada Franco Berruti, Wewstern University, Canada Xiaotao Bi, UBC, Canada Ray Cocco, PSRI Inc. USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/fluidization_xv/172

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Micro/Meso simulations of a fluidized bed with heat transfer

F. Euzenat^{1,*}, A. Wachs², A. Hammouti¹, É. Climent³, P. Fede³

¹Fluid Mechanics Department – IFP Énergies Nouvelles – France Department of Chemical Engineering – Department of Mathematics – University of British Columbia – Canada ³Particles, Spray and Combustion Group – IMFT – France

> Fluidization XV. 2016 – Montebello, Canada

ANR MORE4LESS

Gas-solid flows in industry

En avent	Chemistry	Pharmaceutics
⊏nergy	Petrochemicals	Food
Cracking	Reactors	Drying
AA-CAES	Regenerator	Granulation
Solar plant	Adsorption	Coating

Technologies :

► Fields :

- Fluidized beds
- Fixed beds

Gas-solid flows in industry

	Inlet (m)	Height (m)	N _{particles}
Pilot plant ¹	0.254 ×0.432	3	$10^9 - 10^{11}$
Industrial plant ²	5	22	$10^{13} - 10^{15}$

PeliGRIFF (IFPEN)

YALES2 (CORIA)

NEPTUNE CFD (IMFT)

ANR project MORE4LESS : IFPEN, CORIA, IMFT

¹Fournol and Bergougnou. In: *Can. J. Chem. Eng.* 51 (1973), pp. 401–404. ²Farrauto Bartholomew. *Fundamentals of Industrial Catalytic Processes.*

Microscale : Local conservation equations

$$abla \cdot oldsymbol{u_c} = 0$$

Amir Esteghamatian 3rd year PhD student³

$$\frac{\partial \rho_c \boldsymbol{u_c}}{\partial t} + \nabla \cdot (\rho_c \boldsymbol{u_c} \boldsymbol{u_c}) + \nabla P - \mu_c \nabla^2 \boldsymbol{u_c} - \rho_c \boldsymbol{g} + \boldsymbol{F_{loc}} = 0$$

Mesoscale : Averaged conservation equations

$$\frac{\partial \alpha_c}{\partial t} + \nabla \cdot (\alpha_c \boldsymbol{u_c}) = \boldsymbol{0}$$

$$\frac{\partial \alpha_c \rho_c \overline{\boldsymbol{u}_c}}{\partial t} + \nabla \cdot (\alpha_c \rho_c \overline{\boldsymbol{u}_c \boldsymbol{u}_c}) + \nabla P - \nabla \cdot (\alpha_c \boldsymbol{\tau}_c) + \overline{\boldsymbol{F}_{\boldsymbol{\rho}\boldsymbol{c}}} - \alpha_c \boldsymbol{g} = 0$$

³Esteghamatian et al. "Micro/Meso simulation of a fluidized bed in a homogeneous bubbling regime". In: *Int. J. Mult. Fl.* (2016).

Microscale : Local conservation equations

$$\frac{\partial \rho_c C p_c T_c}{\partial t} + \nabla \cdot (\rho_c C p_c T_c \boldsymbol{u}_c) - \nabla \cdot (\lambda_c \nabla T_c) - \boldsymbol{Q}_{loc} = 0$$

Mesoscale : Averaged conservation equations

$$\frac{\partial \alpha_c \rho_c C \rho_c \overline{T_c}}{\partial t} + \nabla \cdot (\alpha_c \rho_c C \rho_c \overline{T_c} \overline{u_c}) - \nabla \cdot (\alpha_c \lambda_c \nabla \overline{T_c}) - \overline{Q} = 0$$

・ロト ・ 日本 ・ 日本 ・ 日本

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

I- Microscale simulations

- I-1. PeliGRIFF tools
- I-2. Random beds
- I-3. From DNS to DEM/CFD

II- Comparison DNS-DEM/CFD

- II-1. Mesoscale : Closure laws
- II-2. Random beds
- II-3. Fluidized beds

Conclusion/Perspectives

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

I- Microscale simulations

- I-1. PeliGRIFF tools
- I-2. Random beds

I-3. From DNS to DEM/CFD

II- Comparison DNS-DEM/CFD

- II-1. Mesoscale : Closure laws
- II-2. Random beds
- II-3. Fluidized beds

Conclusion/Perspectives

I-1. PeliGRIFF tools : Validation (Isolated sphere)

- Convergence order ppprox 1.5
- Error to correlations :
 - $\epsilon < 1\%$ avec Feng
 - $\epsilon \approx 3\%$ autres

 Thermal boundary layer : 4 points to get \epsilon < 2%

I-2. PeliGRIFF tools : Validation (Random beds)

- ► Tavassoli cases⁴ :
 - Bi-periodic box : $6d_p \times 6d_p \times 8d_p$
 - Grid size : $d_p/h \in [8; 64]$
 - Richardson extrapolation ϕ_{tot} : $\phi_{tot}(h) = \phi_{tot,0} + A_{tot}h^p$

► Individual convergence $\phi_i \rightarrow d_p/h = 48$ to get $\epsilon < 5\%$

⁴Tavassoli et al. In: *Int. J. Mult. Fl.* 57 (2013), pp= 29+3/+ < ≡ + < ≡ + ∞ < <

- Closure laws :
 - Comparison to literature correlations : Gunn⁵, Deen⁶
 - Proposition of a new closure law :

$$Nu(\alpha_d, Pe) = (1.92\alpha_d^2 + 2.27\alpha_d + 4.97)Pe^{0.42\alpha_d^2 - 0.43\alpha_d + 0.36}$$

⁵Gunn. In: Int. J. H. M. Tr. 21 (1978), pp. 467-476.

⁶Deen and Kuipers. In: *Chem. Eng. Sc.* 116 (2014), pp_645−656. = > = ∽ <

$$Nu_i = h_i S_i (T_{d,i} - T_{c,bulk})$$

Volume averaging on boxes around particles :

$$T_{c,bulk} = \frac{\int_{V_{box}} \alpha_c(\mathbf{r}) T_c(\mathbf{r}) d\mathbf{r}}{\int_{V_{box}} \alpha_c(\mathbf{r}) d\mathbf{r}}$$

э

New closure law formulation h with Re :

$$\overline{h} = ARe^{\alpha(L_{box}/d_p)}$$

- High impact of box size on $\alpha(L_{box}/d_p)$
- Trend with Re similar to 1D-balance, Gunn⁷ and Deen⁸

⁷Gunn. In: Int. J. H. M. Tr. 21 (1978), pp. 467–476.

⁸Deen and Kuipers. In: *Chem. Eng. Sc.* 116 (2014), pp_645−656 = > ≡ ∽ <

I-3. From DNS to DEM-CFD

• Use of kernel weighting $g(|\boldsymbol{r} - \boldsymbol{r}_{\rho}|)$:

$$T_{c,bulk} = \frac{\int_{V_{box}} \alpha_c(\mathbf{r}) g(|\mathbf{r} - \mathbf{r}_p|) T_c(\mathbf{r}) d\mathbf{r}}{\int_{V_{box}} \alpha_c(\mathbf{r}) g(|\mathbf{r} - \mathbf{r}_p|) d\mathbf{r}}$$

- 10 kernel types : 5 function of box size, 5 with fixed decreasing rate
- Estimation of new closure laws depending on kernel definition

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ж

I- Microscale simulations
I-1. PeliGRIFF tools
I-2. Random beds
I-3. From DNS to DEM/CFD
II- Comparison DNS-DEM/CFD
III-1. Mesoscale : Closure laws

- II-2. Random beds
- II-3. Fluidized beds

Conclusion/Perspectives

II-1. Closure laws for mesoscale

► Flow : Beetstra⁹, Di Felice¹⁰, ...

$$f_{hd} = f(\alpha_d, Re)$$

 $T_{i,j+1}$

T;

 $T_{i,i-1}$

▶ Temperature : Gunn¹¹, Deen¹², ...

$$Nu_{hd} = f(\alpha_d, Re, Pr)$$

• Particle \rightarrow fluid information :

Linear interpolation

$$Nu_{pd} = \frac{1}{\Delta V} \sum_{N_p} \theta Nu_{hd}$$

⁹Beetstra, Van der Hoef, and Kuipers. In: *Chem. Eng. Sc.* 62 (2007), pp. 246–255.

¹⁰Di Felice. In: Int. J. Mult. Fl. 20 (1994), pp. 153–159.

¹¹Gunn. In: Int. J. H. M. Tr. 21 (1978), pp. 467-476.

¹²Deen and Kuipers. In: *Chem. Eng. Sc.* 116 (2014), pp=645-€56... ≥ ∽ ⊲ ⊲

II-2. Quid for hydrodynamic forces¹⁴

- Impact of closure laws on global parameters
- Effect of meshes to particle ratio¹³
 - Convergence for $\Delta_x/d_p \in [1.8; 3]$

¹³ Manuel Bernard. "Approche Multi-échelle pour les écoulements fluide-particules". PhD thesis. MEGEP, 2014.

¹⁴Esteghamatian et al. "Micro/Meso simulation of a fluidized bed in a homogeneous bubbling regime". In: *Int. J. Mult. Fl*. (2016). < = > < = >

- Heat closure law : Ranz-Marshall, Gunn
- ► Fluid closure law : Di Felice
- Homogeneous fluidization :
 - \blacktriangleright Particle motion and agitation : \checkmark
 - Heat transfer mechanisms : pprox 🗸

・ロト ・ 日本 ・ 日本 ・ 日本

3

- ► Heat closure law : Ranz-Marshall, Gunn
- ► Fluid closure law : DiFelice
- Bubbling fluidization :
 - Particle motion and agitation : X
 - Heat transfer mechanisms : X

Conclusion and Perspectives

- Micro-analysis of heat transfer ightarrow closure laws
- Improvement for DEM-CFD :
 - Closure laws
 - Modeling (equations)
- Direct comparison of DNS/DEM-CFD simulations on going
- Perspectives :
 - Closure laws for wall-gas heat transfer from DNS
 - Effect of bi-dispersity
- MORE4LESS Project :
 - Closure laws implementation in YALES2 (CORIA)
 - Fluidized bed with complex geometries simulations
 - \blacktriangleright DEM-CFD \rightarrow Euler-Euler transition on NEPTUNE_CFD (IMFT)

Innovating for energy

www.ifpenergiesnouvelles.com

ション ふゆ アメリア メリア しょうくの

Appendix 1. DLM/FD points distribution over a sphere

- Strategies : (layers, spiral), spacing (s = h, 2h)
- Spatial convergence :
 - isolated sphere, domain $(6d_p \times 6d_p \times 8d_p)$
 - Bi-perdiodic
 - Spiral distribution chosen
 - Spacing $s : 2h, \sqrt{3}h$
- Richardson : $\phi(h) = \phi_{h=0} + Bh^p$

Appendix 2 : Fixed beds spatial convergence

Total heat transfer :

$$\phi_{tot} = \sum_{i=1}^{N_p} \phi_{h=0} + \sum_{i=1}^{N_p} B_i h^{p_i}$$

- 7 meshes (CFL constante)
- Convergence on ϕ_{tot}

Appendix 3 : Fixed beds heat transfer

- Deen¹⁵ test case :
 - ► 1326 spheres of 6mm, α_d = 0.3 with walls
 - $Re_s = \frac{\rho U_s d_p}{\mu_f} \in [36; 144]$
- ▶ Tavassoli¹⁶ test case :
 - $\alpha_d \in [0.1; 0.3]$ (55 to 265 spheres of 1mm) Bi-periodic
 - ▶ *Re_s* ∈ [10; 100]

¹⁵Niels G. Deen et al. In: Chem. Eng. Sc. 81 (2012), pp. 329-344.
¹⁶Tavassoli et al. In: Int. J. Mult. Fl. 57 (2013), pp. 29-37. < ≥ < ≥ < > <

Appendix 4 : Macro/micro heat transfer analysis comparison

Authors	Tavassoli ¹⁷	Deen ¹⁸
α_p	[0.1; 0.5]	0.3
N_p	[55; 265]	1326
Rep	[10;100]	[36;144]

Appendix 5. Wall-Fluid heat transfer

• Literature \rightarrow Glicksman¹⁹ :

►
$$Nu = \frac{h_w d_p}{\lambda_c} = \begin{cases} 5 + 0.05 Re_p Pr & \text{si } \text{Re}_p < 150 \\ 0.18 Re_p^{0.8} Pr^{0.33} & \text{si } \text{Re}_p \ge 150 \end{cases}$$

¹⁹Kunii and Levenspiel. *Fluidization Engineering*. Ed. by H. Brenner. Butterworth-Heinemann, 1991. ৰ চন বিজ্ঞান হোৱা প্ৰজ্ঞান হয় প