Scalable lentiviral vector production using stable producer cell lines in perfusion mode

Sven Ansorge
National Research Council, Canada

Aziza Manceur
National Research Council, Canada

Stéphane Lanthier
National Research Council, Canada

Sonia Tremblay
National Research Council, Canada

Anne-Marie Gélinas
National Research Council, Canada

Follow this and additional works at: http://dc.engconfintl.org/ccexvi

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Cell Culture Engineering XVI by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Sven Ansorge, Aziza Manceur, Stéphane Lanthier, Sonia Tremblay, Anne-Marie Gélinas, July Dorion-Thibaudeau, Sophie Broussau, Julia Transfiguracion, Hafida Aomari, and Rénald Gilbert

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/ccexvi/61
Scalable Lentiviral Vector Production Using Stable Producer Cell Lines in Perfusion Mode

Sven Ansorge, PhD

National Research Council, Human Health Therapeutics Research Centre

May 6th, 2018
Lentiviral vectors (LV) are used for gene and cell therapy

- HIV-based, enveloped virus
- Fragile, sensitive to pH and temperature
- Stable gene integration into genome of dividing and non-dividing cells

→ Gene therapy, CAR-T
Bioprocessing of Lentiviral vectors (LV)

- Currently, LV are mainly produced in adherent cells by transfection of 4 plasmids: Virus accessory genes (Gag/Pol, Rev and VSV-G) and the gene of interest.

Objective: PD for stable producer cell lines (production of LV under the control of two switches) in suspension.
LV titers obtained under different modes of operation

- **Total Yield with different modes of operation**

<table>
<thead>
<tr>
<th>Mode of Operation</th>
<th>Total yield (TU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch (n=7)</td>
<td>2.09E+10</td>
</tr>
<tr>
<td>Fed-batch (n=2)</td>
<td>3.54E+10</td>
</tr>
<tr>
<td>Perfusion (n=4)</td>
<td>1.91E+11</td>
</tr>
</tbody>
</table>

10-fold yield increase when operating in perfusion mode (sequential harvests): Manceur et al, Human gene Therapy, 2017

Perfusion: Comparison of different cell retention systems

- **Perfusion with an acoustic filter**
 - Functional titer (TU/ml) vs Time (dpi)
 - No sequential harvesting with ATF

- **Perfusion with an ATF filter (0.5µm - PES)**
 - 2 log decrease

→ No sequential harvesting with ATF
LV production and purification: towards ‘continuous’ bioprocessing

1. Transfer to GMP
2. Cost analysis/optimization/LV stability
3. Integrate USP and DSP
Acknowledgements

• Rénald Gilbert
• Aziza Manceur
• July Dorion-Thibaudeau
• Stéphane Lanthier
• Parminder S. Chahal
• Anne-Marie Gélinas
• Sophie Broussau
• Hafida Aomari
• Sonia Tremblay
• Julia Transfiguration

Poster #141