A new type of superelastic and shape memory materials: ThCr2Si2- structured novel intermetallic compounds at small length scales

Conference Dates

October 1-6, 2017


Crystalline, superelastic materials typically exhibit large recoverable strains due to the ability of the material to undergo a reversible phase transition between martensite and austenite phases. Applicable to various alloys, ceramics and intermetallic compounds, this reversible transition serves as a general mechanism for superelasticity and shape memory effect. Recently, we noticed that ThCr2Si2-structured intermetallic compounds exhibit a reversible phase transition between a tetragonal (or orthorhombic) phase to a collapsed tetragonal phase under compression along c-axis of the unit cell by making and breaking Si-Si type bonds. This process has nothing to do with martensitic transformation. This unique reversible phase transformation process motivated us to investigate their potential as a superelastic and shape memory material.

Please click Additional Files below to see the full abstract.

This document is currently not available here.