Title
Mechanical properties of borothermally synthesized ZrB2
Conference Dates
September 17-20, 2017
Abstract
Mechanical properties of borothermally synthesized, highly pure ZrB2 were tested at room and elevated temperatures. Commercially available ZrB2 powder typically contains 1 to 4 wt % hafnium which has been shown to lower thermal properties of dense ZrB2 ceramics. Further, commercial grade ZrB2 contains other impurities (0.6 wt% O, 0.11 wt% N, 0.04 wt% Fe and others) which are also known to decrease its high-temperature mechanical strength. Purer grades of zirconia and boron powders, containing < 75 ppm hafnium and <0.5 wt% of other metal impurities, were reacted to produce ZrB2 for room and elevated temperature mechanical property studies.
The zirconia and boron powders were reacted at 1000°C in a graphite vacuum furnace for two hours. The synthesized ZrB2 powder was then rinsed with methanol to remove boria from its surfaces, sieved with a #45 mesh, and hot pressed to near full density with 32 MPa applied pressure in a flowing argon atmosphere at 2100°C. The hot pressed billets were machined to ASTM standard test bars with the flexure surface polished to 1 um. Young’s modulus, Vickers Hardness, fracture toughness, and four-point bend strength were measured, and the results will be discussed.
Recommended Citation
Alec C. Murchie, Greg E. Hilmas, and William G. Fahrenholtz, "Mechanical properties of borothermally synthesized ZrB2" in "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV", Jon Binner, The University of Birmingham, Edgbaston, United Kingdom Bill Lee, Imperial College, London, United Kingdom Eds, ECI Symposium Series, (2017). https://dc.engconfintl.org/uhtc_iv/17