Study on relation between spatial distribution and release rate of hydrophobic compounds incorporated in polymer micelles with anomalous small angle X-ray scattering

Conference Dates

July 31-August 4, 2017


Amphiphilic block copolymers in aqueous solution undergo self-assembly into polymer micelles composed of hydrophobic core and hydrophilic shell. The polymer micelles can solubilize hydrophobic compounds in aqueous solution by incorporating them in the hydrophobic core. Therefore, they have been expected to be a drug career in drug delivery system (DDS). In DDS, controlling of the drug release behavior and retention stability are critical issues. However, tuning release rate and stability of retention of drug molecules is significantly difficult. Since the hydrophobic molecules must pass through the hydrophobic cores and hydrated corona layers to go out the polymer micelles, their release properties should strongly depend on spatial distribution of drug molecules in polymer micelles. Therefore, to elucidate the relation between spatial distribution of drug molecules and release properties of drug molecules is of significant importance to design a novel DDS. Thus, the aim of this study is to clarify the relation between spatial distribution of hydrophobic compounds in polymer micelles and their release and retention property. Poly(methyl methacrylate)-block-poly(N,N-(dimethylamino)ethyl methacrylate) (Poly-1) as amphiphilic block copolymer was synthesized by reversible addition-fragmentation radical polymerization. The weight- and number-average molecular weights of the resulting Poly-1 were 1.6104 g mol-1 and 1.9104 g mol-1, respectively. Three kinds of compounds (9-bromofluorene (BrF), 4-bromobenzyl alcohol (BrBzOH), 4-bromophenol (BrPh)) were employed as bromine-labeled hydrophobic compounds. Poly-1 and a hydrophobic compound were mixed at 10 wt% of a hydrophobic compound against Poly-1.

Please click Additional Files below to see the full abstract.

44.pdf (107 kB)

This document is currently not available here.