A scalable and physiologically relevant system for human induced pluripotent stem cell expansion and differentiation

Conference Dates

January 27-31, 2019


Human induced pluripotent stem cells (iPSCs) and their derivatives are needed in large numbers for various biomedical applications. However, scalable and cost-effective manufacturing of high quality iPSCs and their derivatives remains a challenge. In vivo, cells reside in a 3D microenvironment that has plenty of cell-cell and cell-ECM (extracellular matrix) interactions, sufficient supply of nutrients and oxygen, and minimal hydrodynamic stresses. The current iPSC culturing methods, however, provide highly-stressed culturing microenvironments, leading to low culture efficiency. For instance, we and others showed iPSCs typically expanded 4-fold/4 days to yield ~2.0x10^6 cells/mL with current 3D suspension culturing. These cells occupy ~0.4% of the bioreactor volume. To our best knowledge, the largest culture volume demonstrated to date for iPSCs is less than 10 liters. There is a critical need to develop new culture technologies to achieve the iPSCs’ potential.

Please click Additional Files below to see the full abstract.

69-Poster 34.pdf (402 kB)

This document is currently not available here.