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Abstract

Biochar is by now recognized as a carbon dioxide removal (CDR) approach in climate
change mitigation scenarios. Less clear is its framing as an approach for soil carbon
sequestration. We posit that biochar carbon sequestration has all the traits of CDR
through soil carbon management, with respect to greenhouse gas abatement and co-
benefits for food production. Similar to compost, biochar is typically produced off-saill,
and a life-cycle emission balance is required to quantify impact. The fact that biochar
production by pyrolysis can generate energy products from the concurrent evolution of
gases may position biochar as a hybrid engineering-biological approach. However, the
CDR is still delivered by photosynthesis and biochar improves soil fertility. Here we
argue that many forms of SOC sequestration have implicit tradeoffs with food security
when they are scaled globally, whereas this is not the case with soil amendments such
as biochar or compost from non-competitive biomass resources. Other advantages of
biochar for soil carbon sequestration arise from its persistence in soil, allowing one-
time or periodic applications, and the capacity to estimate sequestration from the
chemical composition of the biochar, both facilitating implementation and avoiding the
need for soil sampling for monitoring and verification.
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Soil Carbon Sequestration System Types
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Biochar Climate Mitigation
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Crop Yield Responses

Global crop yield responses

+11-28% (meta-analyses?)
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Molecular Properties - Persistence

H/C
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“Small” cluster sizes:
18-40 C from oak wood and corn residues

at 350° C and 600° C
25 to 52 C from chestnut wood between

500° C and 700° C
20 or more C in Midwestern Mollisol and

Amazonian Dark Earth




Persistence in Soil
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H/Corg ratio

Biochar with higher
condensation (=low
H/Corg ratios) have
greater persistence

(Only experiments longer than
one year, 2-pool model, 10°C)










Environmental Benefits
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Climate Change Mitigation — Life Cycle

Manure wastes
missing in global
assessments
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Take-Home Messages

o Biochar system with nutrient-rich feedstocks delivers
resource as well as GHG benefits

BUT: technology development needed

o Lower life-cycle emission reductions of biochar systems than
SOC accrual alone

BUT: Lots of moving parts that need monitoring (N,O, time
horizon...), not only with biochar systems...

o Trade-offs between food production and C accrual is different
between external and internal C source approaches and
environmental/water burden not considered

BUT: Yield/water prioritization of land managers/costs
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