Klebsiella pneumoniae as cell factory for chemicals production

Frank Baganz

Jian Hao

Gary Lye

Follow this and additional works at: https://dc.engconfintl.org/microbial_ii
Klebsiella pneumoniae as cell factory for chemicals production

Frank Baganz, Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
f.baganz@ucl.ac.uk
Jian Hao, Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China
Gary Lye, Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK

Key Words:
Klebsiella pneumoniae, 1,2-propanediol, R-acetoin, isobutanol, 2,3-dihydroxyisovalerate

Klebsiella pneumoniae is an important industrial microorganism and can utilize a wide range of different carbon sources including glucose, xylose, and glycerol for production of many chemicals. In addition, various molecular biological tools are available for metabolic pathway engineering. This makes *K. pneumonia* an excellent candidate as cell factory for production of chemicals with industrial applications such as 1,3-propanediol, 2,3-butanediol, acetoin, isobutanol and 2,3-dihydroxyisovalerate. It has been shown that *K. pneumoniae* is an efficient 1,3-propanediol producer and the technology using glycerol as a feedstock has been industrialized in China. More recently a *K. pneumoniae* ΔtpiA knock-out strain was constructed that lost the activity of triosephosphate isomerase and prevented glycerol catabolism. However, this strain still utilized glycerol, and 1,2-propanediol became the main catabolite [1]. Using glucose or other sugars as carbon sources, 2,3-butanediol is the main product of this bacterium. 2,3-butanediol has three stereoisomers, and all isomers can be synthesized by *K. pneumoniae* [2]. By disruption of butanediol dehydrogenase and culturing the engineered strain with glucose as the carbon source R-acetoin was produced in high titers [3]. The 2,3-butanediol synthesis pathway and branched-chain amino acid synthesis pathway share the same step of α-acetolactate synthesis from pyruvate. Blocking the 2,3-butanediol synthesis pathway by knocking out *budA* resulted in higher α-acetolactate flow into the branched-chain amino acid synthesis pathway, and 2-ketoisovalerate was produced by this engineered strain. 2-ketoisovalerate is converted to isobutyraldehyde with the catalysis of an indole-3-pyruvate decarboxylase (*ipDC*), and isobutyraldehyde is further converted to isobutanol (Fig. 1). This is the first endogenous isobutanol synthesis pathway identified in bacteria [4]. In the branched-chain amino acid synthesis pathway, 2-ketoisovalerate is synthesized from 2,3-dihydroxyisovalerate with the catalysis of dihydroxy acid dehydratase (ilvD). The ilvD knock out strain produced a high level of 2,3-dihydroxyisovalerate, providing the first biological production route [5]. Our work demonstrates that *K. pneumonia* has great potential as cell factory for chemicals production and industrially relevant titres and yields can be obtained by metabolic pathway engineering and optimization of fermentation conditions.

![Diagram](image)

Figure 1: A) Native isobutanol synthesis pathway in *K. pneumoniae*. B) 2,3-butanediol synthesis pathway. C) Branch amino acid synthesis pathways.