Heat of reaction of hydrothermal liquefaction reactions

Morgane Briand
CEA-LITEN, France, morgane.briand@cea.fr

Geert Haarlemmer
CEA LITEN DTBH/STHB/LTCB

Pascal Fongarland
LGPC – Université Lyon 1

Anne Roubaud
CEA LITEN DTBH/STHB/LTCB

Follow this and additional works at: https://dc.engconfintl.org/pyroliq_2019

Part of the Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
HEAT OF REACTION OF HYDROTHERMAL LIQUEFACTION

PYROLIQ

JUNE 17, 2019

MORGANE BRIAND

GEERT HAARLEMMER, ANNE ROUBAUD

PASCAL FONGARLAND
HYDROTHERMAL LIQUEFACTION

- **Hydrothermal Process**
 - Water as solvent
 - Subcritical conditions:
 - Temperature: 250-370°C
 - Water remains in liquid phase

- **Final Products**
 - Product with high energy density
 - %C: 70%
 - LHV: 30 MJ/kg
 - (blackcurrant pomace, 300°C)
 - Robust Process

- Heat of the reaction is a key value for the upscaling
Heat of the reaction

- **Sugar Beet pulp**, 330°C → *Initially endothermic*, then mostly *exothermic* → Enthalpy of reaction:
 Sugar Beet Pulp: -1 MJ/kg [2]

- **Agave pulp** and **Organic Fraction of Municipal Waste**, 220°C. → Enthalpy of reaction:
 Agave Pulp: -3.1 MJ/kg, Organic Municipal Fraction Waster: -7.3 MJ/kg [3]

- **Cellulose**, **Glucose** and **Wood**, 240°C. → Enthalpy of reaction
 Cellulose: -1.07 MJ/kg, Glucose: -1.06 MJ/kg, Wood: -0.76 MJ/kg [4]

So far, mostly on carbonization
Different methods to estimate the enthalpy of reaction
Details on temperature of reactions are not highlighted

HTL EXPERIMENTS

• **Batch**
 - External heating
 - Setpoint control
 - Manual control
 - Slow heating
HTL EXPERIMENTS

• **Batch**
 - External heating
 - Setpoint control
 - Manual control
 - Slow heating

• **Continuous reactor**
EFFECT OF GRINDING

Raw Biomass : $\Phi > 1 \text{ mm}$
Ground biomass : $\Phi < 600 \mu\text{m}$
Solution : 10% D.M

Raw BCP
Ground BCP
HEAT OF REACTION

• Calculation of the heat of reaction
 ▪ Water as a reference
 ▪ Results on the Blackcurrant pomace
 ▪ Experiments carried out in the batch reactor

• 3 Methods
 1. Imposing temperature, variation of power is recorded
 2. Imposing target ramp temperature, variation of power is recorded
 3. Imposing power, variation of temperature is recorded
Target temperature: 300°C

- Good control on temperature
- Repeatability between runs

Morgane.Briand@cea.fr
Target temperature : 300°C

- **Repeatability between runs → Average in the results prior to the estimation**
- **Variations in power curves → reveals that heat is released**
Target temperature: 300°C

Sudden decreases in power around 200 and 250°C
Average surface between the power curve of water and power curve of biomass solution = enthalpy of reaction
HEAT OF REACTION : AUTOMATIC CONTROL

• Differences in heating applied
 - Experiments performed with constant same ambient temperature (16°C)
 - Temperature evolution very close but not identical
 - Differences appear at 200°C - 250°C
 - Heat released by the reaction estimated at 4 MJ/kg based on the difference of applied power curves:
 - \(\Sigma \text{Power to water} - \Sigma \text{Power to BCP} = \text{power of the reaction} \)
 - Time to get to 300°C
 - For 30 g of biomass

• Inconvenience of the method
 - Thermal losses are different due to different heating coil temperatures
 - Time to reach target temperature generated an overestimation of the energy released
HEAT OF REACTION : AUTOMATIC CONTROL

Target ramp temperature : 15°C/min

Reproducibility between runs → average curves
Reproducibility between methods : variations between 200 and 250°C
Area between curves returns the enthalpy of reaction

Morgane.Briand@cea.fr

Cork – Pyroliq - June 17, 2019
• **Hypothesis**
 - Heat produced during reaction
 - Heater control reduces power to compensate for exothermal reaction
 - Surface under power difference represents energy supplied from biomass

• **Heat produced by reaction**
 - Exothermal reaction
 - Estimation 1.3 MJ/kg for blackcurrant pomace
 - $\Sigma \text{ Power to water} - \Sigma \text{ Power to BCP} =$ power of the reaction
 - Time to get to 300°C
 - For 30 g of biomass

• **Problem**
 - Only beginning of the reaction
 - Reaction continues
 - Underestimation of the heat released
Manual control, Power 2 kW → 400W

Differences in final temperatures: Water (300°C) – BCP Solution (308°C)

Enthalpy of reaction: Estimated from the difference between final temperatures
• **Method**
 - Experiments performed with constant same ambient temperature
 - ΔT is took from the maximum temperatures observed with blackcurrant pomace and water

• **Reaction definitely exothermal**
 - Heat released by the reaction **1.5 MJ/kg** of biomass
 - Average C_p of blackcurrant pomace and reactor $\times \Delta T$
 - Minus (Energy vaporisation of water + Energy required to heat the blank to its final temperature)
 - \rightarrow Extra heat = Enthalpy of reaction
- **Constant power** so the temperature was settled around 300°C
- 10% D.M of BCP
- Temperature increase 30 °C
- Heat released by the reaction 1.7 MJ/kg
CONCLUSIONS

• Exothermal global reaction
 ▪ 3 methods presented here from Batch experiments
 ▪ 1 continuous experiment
 ▪ Always in the sense of exothermic reaction

• Results
 ▪ Heat released in the range of **1 to 4 MJ/kg** of biomass
 - Target temperature (300°C) : 4 MJ/kg
 - Target Ramp temperature (15°C/min) : 1.3 MJ/kg
 - Imposed power : 1.5 MJ/kg (Batch) / 1.7 MJ/kg (Continuous)

Thermal characterisation of reaction is also a step in the understanding of the underlying mechanism in the conversion of biomass
Any Questions?