Comparison of Laboratory and Industrial *Saccharomyces cerevisiae* Strains for Their Inhibitor Resistance and Xylose Utilization

Geng Anli*, Wang Zhankun, Lai Kok Soon and Tan Wei Yi Mark, Goh Kiow Leng Hedy, New Jen Yan

School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
Overview

• Lignocellulosic ethanol process
• Biocatalysts development at Ngee Ann Polytechnic
• Inhibition and stresses studies
 – S. cerevisiae strains
 – Inhibitor resistance
 – Stress tolerance
 – Xylose utilization
Lignocellulosic Biomass Composition

- **Cellulose**
 - Very high molecular weight
 - Highly crystalline
 - Uniform polymer of glucose
- **Hemicellulose**
 - Non-homogeneous
 - Non-crystalline
 - Short branches
 - Polymers of C5, C6 sugars
- **Lignin**
 - Aromatic
 - Complex structure
- **Extractives**
 - Low molecular weight
 - Mostly lipophilic
Crops and Lignocellulose

1. Crops

A. Sucrose
F \rightarrow \text{G}

B. Starch
G \rightarrow G \rightarrow G \rightarrow G

2. Lignocellulose

C. Cellulose

D. Hemicellulose

E. Lignin
G \rightarrow G \rightarrow G \rightarrow G
G \rightarrow Gal \rightarrow Man \rightarrow X \rightarrow Ara \rightarrow Other \rightarrow Lignins (coniferyl, sinapyl, vanillyl)
Biomass to Fuel Ethanol

Crops → Starches Sugars → Amylase → Glucose → Yeast → Ethanol

Biomass → Cellulose Hemicellulose Lignin → Cellulase hemicellulase → Hexose (C6) Glucose Galactose Mannose → Yeasts Bacteria → Ethanol

Pretreatment → Hydrolysis → Fermentation

BIOCATALYSTS

NGEE ANN POLYTECHNIC
Cellulosic Ethanol Biocatalyst Development at Ngee Ann Poly

Consolidated Bioprocessing

High-Strength Enzyme Complex

Robust Ethanologens

Consolidated processing, i.e. hydrolysis and fermentation in one step, for fuel ethanol production from biomass could make this process more economically feasible
Our Focuses

High-strength enzyme cocktails
- Celluase
- Hemicellulase
- Pectinase
- Peroxidases etc.

Robust ethanologens
- Cofermentation of glucose and xylose
- Inhibitor resistant
- Temperature tolerant
- Ethanol tolerant
Our Approaches

- Strain Selection
- Strain Improvement
- Medium Engineering
- Biocatalysts
- Induction Depression
- Proteomics
- Genomics
Our People
Our People
Objectives

• Comparison of lab and industrial *Saccharomyces Cerevisiae* strains on
 – Inhibitor resistance
 – Stress tolerance
 – Xylose utilization
Biomass Hydrolysate Fermentation

Sugar mixture
- Hexose
 - Glucose
 - Galactose
 - Mannose
- Pentose
 - Xylose
 - arabinose

Stresses
- pH
- Ethanol
- Xylose
- Temperature

Inhibitors
- Furans
- Weak acids
- Phenolics
Robust Ethanologens

- Inhibitor resistance
- Stress tolerance
- Sugar mixture utilization

Yeast *Saccharomyces cerevisiae*
- More resistant to inhibitors
- More tolerant to stresses such as ethanol, low pH and high temperature
Saccharomyces Cerevisiae strains

- **Laboratory strains**
 - ATCC 44771 (haploid)
 - CBS 8066 (diploid) – xylulose-utilizing
- **Industrial strains**
 - ATCC 24860 (diploid) – xylulose-utilizing
 - ATCC 96581 (polyploid)
 - ATCC 4126 (polyploid)
 - TJU (polyploid)
Inhibitor Cocktail

The 100% (v/v) inhibitor stock cocktail

- 75 mM formic acid (Sigma–Aldrich),
- 75 mM acetic acid (Merck)
- 30 mM furfural (Sigma–Aldrich)
- 30 mM 5-hydroxymethyl-2-furaldehyde (HMF) (Sigma–Aldrich).
Stresses

- pH
- Ethanol concentration
- Xylose
- Temperature
Inhibitor Resistance

- ATCC 24860 and ATCC 96581 demonstrated the highest resistance
- ATCC 44771 and CBS 8066 demonstrated the lowest resistance
- TJU and ATCC 4126 growth were sensitive to inhibitor concentration
pH Tolerance

- pH below 4, all strains showed less growth and the optimal pH is 5
- ATCC 44771 showed the least tolerance to the lower pH followed by CBS 8066
- Strains TJU and ATCC 24860 demonstrated the highest tolerance to the lower pH
Ethanol Tolerance

- Strains TJU and ATCC 24860 demonstrated the highest tolerance to ethanol
- ATCC 44771 showed the lowest ethanol tolerance followed by CBS 8066
- ATCC 4126 and ATCC 96581 demonstrated similar moderate ethanol tolerance
Xylose Tolerance

- When xylose concentration is greater than 20g/L, all strains showed significant drop in cell density.
- ATCC 96581 demonstrated the highest xylose tolerance.
- ATCC 4126 showed the lowest xylose tolerance followed by strain TJU.
Temperature Tolerance

- All strains died off at 50°C.
- ATCC 24860 and ATCC 96581 demonstrated moderate tolerance to temperature increase.
- ATCC 4126 and Strain TJU were quite sensitive to temperature change.

![Temperature Tolerance Chart]

OD600

- 0
- 5
- 10
- 15
- 20
- 25

Temperature

- 30 ºC
- 40 ºC
- 50 ºC
Summary

<table>
<thead>
<tr>
<th></th>
<th>Inhibitor</th>
<th>pH</th>
<th>Ethanol</th>
<th>Xylose</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>TJU</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ATCC 4126</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>ATCC 24860</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ATCC 96581</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>CBS 8066</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ATCC 44771</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-</td>
<td>++</td>
</tr>
</tbody>
</table>
Xylose Utilization

- Random mutagenesis by UV irradiation and ethyl methanesulfonate (EMS) and directed evolution
- Except ATCC 44771, the rest strains can all grow on xylose aerobically
- No growth was observed under anaerobic conditions
Conclusion

- ATCC 24860 and ATCC 96581 are the best candidate strains for further improvement
 - Sugar mixture utilization
 - Inhibitor resistance and stress tolerance
 - Biomass hydrolysis
Thank You