Extrusion deposition additive manufacturing utilizing high glass transition temperature latent cured epoxy systems

Gary Gladysz
Dixie Chemical Company, USA, gggladysz@dixiechemical.com

Christopher Hershey
Oak Ridge National Laboratory, USA

John Lindahl
Oak Ridge National Laboratory, USA

Karana Shah
Dixie Chemical Company, USA

Alejandra Campanella
Dixie Chemical Company, USA

See next page for additional authors

Follow this and additional works at: https://dc.engconfintl.org/imam

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Innovative Materials For Additive Manufacturing (IMAM) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Gary Gladysz, Christopher Hershey, John Lindahl, Karana Shah, Alejandrina Campanella, and Vlastimil Kunc

This abstract and presentation is available at ECI Digital Archives: https://dc.engconfintl.org/imam/19
Innovative Materials for Additive Manufacturing

March 8-12, 2020
Santa Ana Pueblo, NM
Large scale additive manufacturing utilizing high glass transition temperature latent cured epoxy systems

*Dixie Chemical Company ** Manufacturing Demonstration Facility

Oak Ridge National Lab
Purpose: ORNL – Dixie CRADA

• Epoxy material solutions with anhydride curatives
 • excellent chemical properties
 • physical aging properties

• Printable on a large-scale printer

• Tooling requirement (in autoclave)
 • elevated temperature
 • pressure composite manufacturing process
 • Short production run
 • Product development
Benefits of latent cure

• Current solidification on part bed materials:
 • Melt process
 • Solidifies on part bed
 • Poor z-direction strength
 • Non-isotropic properties
 • Heating/cooling of part bed
 • High energy requirement to deposit

• New latent cure materials:
 • Thermoset epoxy-based composite
 • High Tg (150-220 C)
 • Deposit at ambient conditions
 • Does NOT solidify on part bed
 • Curing/x-linking occurs after part is built
 • Excellent Z-direction strength
 • Isotropic properties
 • 400% more energy efficient printing process
 • New design options for users
 • Creating custom, printable composite material formulations
Thermoplastic vs. thermoset printing

Thermoplastic

- **Rigidity**
- **Ideal Deposition Zone**
- **Solid Polymer**
- **Poor Bead Stability**

Thermoset

- **Ideal Deposition Zone**
- **Solid Polymer**
- **Heat (thermal) cure in oven**
- **Poor Bead Stability**

Image credit: Oak Ridge National Laboratory
Large scale printer

- MVP/ORNL developed
- Large-scale
- Composite materials
Target: Prototype Autoclave Tooling Requirements

- Cure cycle 177 C (350 °F) 690 kPa (100 psi)
- Dimensional tolerance ± 0.01 in. (.25mm)
- Vacuum
- 64 RMS surface roughness or better
- Low CTE
- Quasi-isotropic tool response
- Ketone resistant
- Low cost
- 10 parts minimum
Phase 1 results

Initially 4 resins & 4 anhydrides

<table>
<thead>
<tr>
<th>Resin</th>
<th>Anhydride curative</th>
<th>Tg (Tan Delta), °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bis-A</td>
<td>ANH-1D</td>
<td>148</td>
</tr>
<tr>
<td>Cycloaliphatic</td>
<td>ANH-1D</td>
<td>220</td>
</tr>
<tr>
<td>Cycloaliphatic</td>
<td>ANH-2D</td>
<td>236</td>
</tr>
<tr>
<td>Cycloaliphatic</td>
<td>ANH-3D</td>
<td>258</td>
</tr>
<tr>
<td>Cycloaliphatic</td>
<td>ANH-4D</td>
<td>199</td>
</tr>
</tbody>
</table>

With nano clay

Dixie Chemical

OAK RIDGE National Laboratory
Materials

- **Resin**: Celloxide 2021P
- **Curative**: ANH-3D
- **Rheological modifier**: Garamite 7305 - Organophilic phyllosilicate

ANH-3D
NMA
MW = 185
Viscosity= 400 cps

Celloxide 2021P
Cycloaliphatic
MW = 252
Viscosity=350 cps
Formulation development

(a)

Clay in 2021P
- 12.5 wt%
- 14 wt%
- 15 wt%

(b)

Clay in ANH-3D
- 10 wt%
- 12.5 wt%
- 15 wt%
Phase 2: Scale-up to large scale

RAM® Print envelope dimensions
X = 4.9 m (16 ft)
Y = 2.4 m (8 ft)
Z = 1.1 m (3.5 ft)
Tasks

• Scale up formulations (optimize viscosity)
• Scale up mixing
• Optimize print parameters
• Optimize curing temperature profile
• Print aerospace tool
• Work with aerospace partner for in-autoclave trials
• Characterize important properties
Formulation development

![Graph showing storage modulus vs. stress for different samples with legends: 2021P/14.0% Clay, ANH-3D/10.9% Clay, 2021P/ANH-3D/12.3% Clay.]

- 5 layers to recover flat surface
- 1.5 inches
Mixing scale-up

- Hollow glass microspheres
- Latent curatives
- Epoxy resins
- Fibers
- Rheological modifiers

OAK RIDGE National Laboratory
Printing parameters – generic boat part
Aerospace tool

- Largest latent cure aerospace tool
- 36.3 kg (80 lb)
Characterization result

• Coefficient of thermal expansion (1/K)
 • $X = 52.44 \, \mu m/(m \, ^\circ C)$
 • $Y = 70.03 \, \mu m/(m \, ^\circ C)$
 • $Z = 54.90 \, \mu m/(m \, ^\circ C)$

• Flexure Properties
 • Strength = $99.2 \pm 6.9 \, MPa$
 • Modulus = $3.69 \pm 0.29 \, GPa$

• $T_g = 220 \, ^\circ C$
Future Work

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Green</td>
<td>Visual</td>
</tr>
<tr>
<td>Glass Transition Temperature (T_g, °C)</td>
<td>220</td>
<td>ASTM D4065</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion, °C⁻¹</td>
<td>X = 52.4</td>
<td>ASTM D2286</td>
</tr>
<tr>
<td></td>
<td>Y = 52.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z = 54.9</td>
<td></td>
</tr>
<tr>
<td>Flexural Strength, MPa</td>
<td>99.2</td>
<td>ASTM D790</td>
</tr>
<tr>
<td>Flexural modulus, GPa</td>
<td>3.7</td>
<td>ASTM D790</td>
</tr>
<tr>
<td>Density, kg/m³</td>
<td>1300</td>
<td>ASTM D 792</td>
</tr>
<tr>
<td>Hardness</td>
<td></td>
<td>ASTM D2240</td>
</tr>
<tr>
<td>Compressive properties</td>
<td></td>
<td>ASTM D695</td>
</tr>
<tr>
<td>Tensile properties</td>
<td></td>
<td>ASTM D695</td>
</tr>
</tbody>
</table>

- Work with aerospace partner
- 10 composite parts
- Check dimensions
Summary

- Cure cycle 177°C (350 °F) 690 kPa (100 psi)
- Dimensional tolerance ± 0.01 in. (.25mm)
- Vacuum
- 64 RMS surface roughness or better
- Low CTE
- Quasi-isotropic tool response
- Ketone resistant
- Low cost
- 10 parts minimum
Acknowledgements

• Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

• The author thanks all members of ORNL especially the Manufacturing Demonstration Facility that helped facilitate this work, & the University of Tennessee
Innovative Materials for Additive Manufacturing

QUESTIONS?