Enhancement of Cellulose Saccharification Kinetics Using an Ionic Liquid

Ananth Dadi, Sasidhar Varanasi, Constance Schall
Department of Chemical & Environmental Engineering
University of Toledo, USA
Ethanol from Biomass

Biomass Source: Lignocellulose

- Pretreatment
 - Cellulose
 - Hemicellulose
 - Lignin

Saccharification Reaction: Hydrolysis to Glucose

- Cellulose
- Xylose
- Lignin Processing

Glucose Fermentation

Ethanol for Fuel

Hydrolysis: critical step
- Enzymatic hydrolysis
- Acid hydrolysis
Cellulose Saccharification

Acid catalyzed hydrolysis

Advantages
- inexpensive catalyst
- modest reaction rates

Disadvantages
- degrades glucose (inhibits fermentation)
- corrosive

Enzymatic hydrolysis using *cellulases*

Advantages
- selective for glucose
- non-corrosive

Disadvantages
- slow reaction rate
- high cost of enzyme and difficult recovery
Enzyme Hydrolysis

- Enzyme molecule
- Cellulose fibril
- Amorphous cellulose

Slow hydrolysis

Rapid hydrolysis
Cellulose Dissolution in Ionic Liquids

- Ionic liquids (IL) are salts that melt at temperatures near ambient.
- Solvent properties can be “tuned” through the cation/anion selection.
- BmimCl has been found to dissolve cellulose*

1-n-butyl-3-methyl imidazolium chloride

Cellulose Regeneration

Cellulose

Ionic liquid

Anti-solvent
Cellulose Regeneration
XRD of Regenerated Cellulose

(A) untreated Avicel
(B) water
(C) methanol
(D) acetonitrile
(E) ethanol
FTIR of Regenerated Cellulose

A is untreated cellulose (Avicell, PH101)
B is regenerated cellulose (anti-solvent: water)
Hydrolysis Experiments

• Enzyme hydrolysis
 – Worthington *T. reesei* cellulase, 150 to 340 FPU/g glucan
 – Celluclast 1.5L, 50 FPU/g glucan; with/without Novozyme 188, 0-166 CBU/g glucan

• Substrate
 – Untreated and IL-regenerated Avicel PH101

• Sugar assay
 – Total soluble reducing sugars (DNS assay)
 – Glucose formation, glucose hexokinase assay
Avicel samples incubated at 130° C for 10 minutes in BmimCl.

Anti-solvent:
- (□) ethanol
- (●) deionized water
- (▲) methanol
- (►) untreated Avicel

17 mg/ml Avicel hydrolyzed with *T. reesei* cellulase activity of 170 FPU/g glucan
Cellulose Hydrolysis

Glucose formation rate

Avicel samples incubated at 130° C for 10 minutes in BmimCl.

Anti-solvent:
- () ethanol
- () deionized water
- () methanol
- () untreated

17 mg/ml Avicel hydrolyzed with *T. reesei* cellulase activity of 170 FPU/g glucan
Initial Hydrolysis Rate

![Graph showing initial hydrolysis rate with time (min) on the x-axis and total reducing sugar released (mg/ml) on the y-axis. The graph includes data points and a trend line.]
Initial Rate of Formation of Soluble sugars

<table>
<thead>
<tr>
<th>Anti-solvent</th>
<th>Initial rate (mg ml(^{-1})min(^{-1}))</th>
<th>Rate Enhancement*</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>0.6473</td>
<td>52</td>
</tr>
<tr>
<td>methanol</td>
<td>0.6823</td>
<td>55</td>
</tr>
<tr>
<td>ethanol</td>
<td>0.6473</td>
<td>53</td>
</tr>
<tr>
<td>untreated</td>
<td>0.0125</td>
<td>-</td>
</tr>
</tbody>
</table>

*Rate enhancement = initial rate regenerated cellulose / untreated cellulose
Total Sugars vs. Glucose

The graphs depict the relationship between total sugars and glucose over time. The x-axis represents time in hours (0-24), and the y-axis represents the amount of sugar released (mg/ml). The graphs show a gradual increase in sugar release over time, with slight variations indicated by data points.
Initial Rate of Formation of Soluble Sugars

<table>
<thead>
<tr>
<th>Enzyme activity</th>
<th>Initial Rate (mg/ml min)</th>
<th>Rate Enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated Cellulose</td>
<td>Regen. Cellulose</td>
</tr>
<tr>
<td>Cellulase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPU</td>
<td>β-glucosidase CBU</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0.0004</td>
</tr>
<tr>
<td>25</td>
<td>83</td>
<td>0.0004</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0.0043</td>
</tr>
<tr>
<td>50</td>
<td>83</td>
<td>0.0044</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.0110</td>
</tr>
<tr>
<td>100</td>
<td>83</td>
<td>0.0140</td>
</tr>
</tbody>
</table>

* Rate enhancement = initial rate regenerated cellulose / untreated cellulose
Avicel samples incubated at 130° C for:

- (□) 10 min
- (○) 30 min
- (△) 1 hour
- (▼) 3 hours
- (►) untreated

Precipitated with water

15 mg/ml Avicel hydrolyzed with *T. reesei* cellulase activity of 150 FPU/g glucan
Cellulose Hydrolysis
Effect of dissolution temperature

Avicel samples incubated for 2 h at:

- (square) 130° C
- (circle) 140° C
- (triangle) 150° C
- (up triangle) untreated

Precipitated with water

17 mg/ml Avicel hydrolyzed with *T. reesei* cellulase activity of 340 FPU/g glucan
Summary & Conclusions

• Simple dissolution of cellulose in the ionic liquid followed by rapid precipitation with anti-solvent is required: incubation time and temperature in IL does not affect hydrolysis.

• Regeneration appears to increase access of cellulose to endo- and exo-glucanases, resulting in significantly improved release rate of soluble sugars.

• Addition of β-glucosidase resulted in higher enzymatic hydrolysis rates.
Summary & Conclusions

- Cellulose regenerated from ionic liquid solution is essentially amorphous.

- Regenerated cellulose exhibited up to a 90 fold increase in hydrolysis rates.
Process Schematic

- Alcohol (fresh feed and recycle)
- Cellulose
- Ionic Liquid
- Pretreatment Tank
- Cellulose Precipitator
- Centrifuge
- Flash Distillation
- Ionic liquid recycle

Cellulose to Hydrolysis Reactor
Alcohol recycle
Acknowledgements

Amy Cox and Ashley Krout, University of Toledo
Sudhir Aki and Joan Brennecke, University of Notre Dame
Jared Anderson, University of Toledo

Center for Plant Biotechnology Research
National Science Foundation
Cellulose Hydrolysis
Effect of β-glucosidase addition

Avicel samples incubated at 130 °C for 10 min in BmimCl and precipitated with water

(Δ) 166 CBU/g glucan
(○) 83 CBU/g glucan
(□) no added β-glucosidase

untreated Avicel hydrolysis in closed symbols

15 mg/ml Avicel hydrolyzed with T. reesei cellulase activity of 50 FPU