CO2 participation in cross-linking reactions and char formation during bio-oil pyrolysis

Farid Chejne
Universidad Nacional de Colombia, Colombia

Javier Alonso Ordoñez
Universidad Nacional de Colombia, jaordonezl@unal.edu.co

Carlos F. Valdes
Universidad Nacional de Colombia

Follow this and additional works at: https://dc.engconfintl.org/pyroliq_2019
Part of the Engineering Commons

Recommended Citation
CO$_2$ PARTICIPATION IN CROSS-LINKING REACTIONS AND CHAR FORMATION DURING BIO-OIL PYROLYSIS.

Javier Ordoñez-Loza1, Carlos Valdés1, Farid Chejne1, Manuel Garcia Perez2, S. Mani Sarathy3, Wen Zhang4, Abdel-Hamid Ewans

1. Mines Faculty, Universidad Nacional de Colombia-Medellín, Colombia
2. Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164-6120, United States
3. King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center, Physical Sciences and Engineering Division, Thuwal, Saudi Arabia
4. King Abdullah University of Science and Technology (KAUST), Analytical Core Lab, Thuwal, Saudi Arabia
Outline

- Introduction
- Methodology
- Results
- Final remarks
The integration of oxy-fuel technologies with new fuels such as biomass-derived pyrolysis oil facilitates CO$_2$ capture and storage with reduced pollution emissions and renewable approach.

- The thermal decomposition of bio-oil under the atmosphere of N$_2$ and CO$_2$ presents significant differences.
- Chemical reactivity of CO$_2$ plays an important role in the pyrolysis.
Methodology

• **Bio-oil fabrication** (Pyrolysis under N$_2$ atmosphere 50 mL/min, 550 °C at lab scale).

• **Bio-oil Characterization**.
 - Elementary analysis,
 - GC-MS, ESI-FT-ICR,
 - H-NMR and C-NMR,
 - TG Analysis (N$_2$ and CO$_2$).
Methodology

Char Characterization. Char samples were obtained before (400 °C) and after (700 °C) of the cross-linking reactions and their chemical characteristics were analyzed by using FTIR, Reactivity Analysis and Elementary Analysis, which permitted to elucidate the role of CO$_2$ in the carbonization.
Results

Bio-oil Composition

- Water (19-30% wt)
- C2-C4 light molecules (10-22% wt)
- Anhydrosugars (10-20% wt)
- Mono-phenols, and mono-furans (3% wt)
- Humins (<3% wt)
- Hybrid oligomers (11-20% wt)
- Pyro-lignin (15-20% wt)
Results (ESI(-) FT ICR) Biooil Characterization (heavy compounds).
Results (ESI(-) FT ICR)
Results (TG-DTG and heat flow of bio-oil in N₂ and CO₂ atmosphere)

CO₂ effect

At temperatures between 300°C and 700°C the CO₂ modifies the dynamics of thermal degradation.

Energy realized due to depolymerization and reorganization reactions.

Energy decreases due to possible gasification process.

Char samples at 400°C and 700°C.
Results (Char Elemental analysis)

By making the process under N2 atmosphere we found less Carbon than that under CO2 atmosphere before 400 ºC and less at 700 ºC.
Results (Char FTIR)
Results (Char FTIR-analysis)
Final remarks
Final remarks

- **300°C**: CO$_2$ Chemisorbed due to Interaction with oxygenated compounds
- **400-500°C**: Molecular reorganization of organic internal structure (Cross-Linking or de-polymerization).
- **500-700°C**: Thermal degradation of char formed, e.g., gasification

CO$_2$ adsorption

internal organic structure
Final remarks

Functional groups are stabilized by the CO₂ adsorbed, and the carbonization reactions or depolymerization are carried out in the non-superficial structure.
Final remarks

C-H⋯O Hydrogen Bonding in CO2-Lewis Base

Under CO₂, the oxygenated outer groups of pyrolygnine are stabilized by hydrogen bonds and the carbonization takes place between benzene rings.

This explains why the number of paraffinic carbons is maintained after carbonization and remaining oxygen is higher than that under N₂ atmosphere.
It was found that the destruction of functional groups corresponding to the oligomers of lignin present in the bio-oil is strongly influenced when the process is carried out under N_2 atmosphere, whereas under CO_2 atmospheres the functional groups remained within the char after carbonization process.

Due to the outgoing water generated during the hydrolysis processes are restricted by CO_2 presence.
Final remarks

Carbon dioxide influences the degradation of products derived from lignocelluloses structures. Furthermore, it can be used in the improvement of technological processes such as the pre-oxidation of bio-oil, production of high reactivity bio-char, production of high value-materials and supercritical extraction.
Acknowledgments

The authors wish to thank the project "Strategy of transformation of the Colombian energy sector in the horizon 2030" funded by call 788 of the Colciencias Scientific Ecosystem, Contract number FP44842-210-2018 and the Colciencias-Doctorados Nacionales fellowship.

Thanks