Conversion of Woody Biomass to Chemicals, Energy and Materials

Shijie Liu and Thomas E. Amidon

Biorefinery Research Institute
Department of Paper and Bioprocess Engineering
SUNY College of Environmental Science and Forestry
Imagine a renewable world
Outline

- Introduction
- Hot-Water Extraction
- Wood Extract Hydrolysis
- Membrane Separation
- Fermentation
- Solid products
- Conclusion
Woody Biomass

Chemical components of wood

21% hardwoods

Lignin

25% softwoods

2-8% extractives

35% hardwoods

hemicellulose

25% softwoods

45% cellulose

carbohydrates

4% hardwoods

25% softwoods
Wood Components:

- Inorganic Components
 K & Ca (400 ~ 1000 ppm);
 Mg & P (100 ~ 400 ppm); and 70 others

- Extractives
 Aliphatic and alicyclic: Terpenes; terpenoids; esters; fatty acids; alcohols; ...
 Phenolic: phenols; stilbenes; lignans; isoflavones; ...
 Others: sugars; cyclitols; tropolones; amino acids, ...

- Hemicellulose

- Lignin

- Cellulose
Incremental Deconstruction

- Maximize value achievable
- Minimize energy loss
- Minimize waste byproducts generation
- Multiple product mix
Integrated Biorefinery:

Woody Biomass → Hot-Water Extraction → Residual Woody biomass → Alkaline Pulping → Unbleached Pulp → Bleached Pulp → Paper products or Cellulose products → Carbohydrates → Aromatics → Plastics Adhesives, Solvent Surface agents...

Methanol → Hydrolysis / Separation → Acetic Acid → Food additives: sugar oligomers → Sugars → Xylitol, Ethanol, Butanol, Acetone, Hydrogen, Lactic Acid, PHA

Gasification Feedstock → Fuel Pellets → Reconstituted Wood Products → Electricity and Steam

Extraction Liquor → Black Liquor → Separation or Co-Gen

Co-Gen or CHP
ESF Biorefinery:
- Hot-Water Extraction
- Hydrolysis
- Fractionation
 - Acetic Acid
 - Methanol
 - Sugars or monosaccharides
 - Aromatics, Furfurals
 - Polysaccharides
- Fermentation to Ethanol, Plastics, ...
Hot-Water Extraction
Maple Wood Extract

- Acetic Acid, Methanol
- Acetyl, Polysaccharides
- Aromatics, Furfurals
- Monomeric Sugars

Starting conditions:
369.20 g OD Maple Woodchips
3024.04 g water, 28°C
Hydrolysis

- Depolymerize macromolecules (of carbohydrates) by inserting water molecules between the monomeric units
- Enzymatic hydrolysis
 - Using a hydrolytic enzyme as catalyst
 - Substrate specific – only working with certain polymer and depolymerize at certain location
- Acid Hydrolysis
 - Using acid (proton) as catalyst
 - Glycosidic bond breakage, no specificity
 - By-product – dehydration reactions
Fractionation

- Solid-liquid separations
 - Aromatics and/or degraded lignin recovery
 - Xylan or xylo-oligomer recovery
 - Catalyst recovery

- Liquid-liquid separations
 - Membrane separations for
 - Sugar stream purification
 - Recovery of chemicals
Nano-Filtration Membrane System
Membrane Separation

- Resistances:
 - Osmotic Pressure
 - Friction – Porous Solids
- Model:

\[
\Delta p = \pi + \frac{\mu}{k} U \left(1 + \frac{U^2}{a + U^2} bU \right)
\]
Flux versus Pressure

![Graph showing the relationship between permeate rate and pressure.](image)
Osmotic Pressure Change

![Osmotic Pressure Change Graph](image)

- **π, psi**
- **V₀/V**

The graph shows the change in osmotic pressure (π, psi) as a function of **V₀/V**. The data points indicate a steady increase in pressure with increasing **V₀/V**.
Fractionation of wood extracts

![Graph showing fractionation of wood extracts over time.](image_url)
Acetic acid concentrations

Concentrate Stream

Permeate Stream

Time, minutes

C, mol/L
Separation Efficiency

![Graph showing separation efficiency over time for Xylose and Aromatic Compounds.](#)
Separation Efficiency

![Graph showing separation efficiency over time for different compounds: Acetate, Methanol, Furfural, and HMF. The x-axis represents time in minutes, ranging from 0 to 360, and the y-axis represents Rs, a measure of separation efficiency. Different symbols are used to represent each compound, with lines showing the trend over time.]

Fermentation

- Ethanol
 - *E. Coli*
 - *Pichia Stipitis*

- Butanol
 - *Clostridium acetobutylicum*

- PHA
“Residual” woody biomass use

- Pulping – paper and fiber products
- Fiber board – reconstituted wood products
- Wood fuel – wood pellets
- Biomass energy – CHP
- Hydrolysis: cellulose conversion to platform chemicals
- Lignin conversion to chemicals and/or energy
Acknowledgements

- Christopher D. Wood
- Raymond Appleby
- Jennifer Putnam
- Alan Shupe
- Tingjun Liu
- Dave Kiemle
- Houfang Lu

- Zhijie (Jeff) Sun
- Kathryn Gratien
- Mitchell Graves
- Ruofei Hu
- Yang Wang
- others
International Biorefinery Conference 2009

Date: October 6-9, 2009
Syracuse, New York

Important Dates:

- Abstracts submitted by Sunday, February 1, 2009
- Acceptances notified Monday, March 2, 2009
- Extended abstract required by Monday, August 31, 2009
- Full manuscripts (for Journal Publications) due by Monday, September 28, 2009
- Full manuscripts - review, November 1, 2009
- Full manuscripts - final version due by Monday, November 15, 2009
- Full manuscripts - notification from Journal, December 1, 2009

Welcome!

The International Biorefinery Conference 2009 (IBC’09) will be held in Syracuse, New York on October 6-9, 2009. The purpose of the conferences is to showcase the latest developments in the field of biorefinery. Please visit our website for more information concerning the Conference: http://www.biorefineryresearchinstitute.com/ibc09

Copyright: The Biorefinery Research Institute, All rights reserved.