Key engineering challenges in the biomanufacturing of lentiviral viral vectors

Peter Jones

Head of Technical Operations, Oxford BioMedica, UK, p.jones@oxb.com

Follow this and additional works at: http://dc.engconfintl.org/cell_gene_therapies_vi

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation

Key engineering challenges in the biomanufacturing of lentiviral vectors

January 29, 2019

Peter Jones, Head of Operational Strategy, Oxford BioMedica
Forward-looking statements

This presentation does not constitute an offer to sell or a solicitation of offers to buy Ordinary Shares (the “Securities”). Although reasonable care has been taken to ensure that the facts stated in this presentation are accurate and that the opinions expressed are fair and reasonable, the contents of this presentation have not been formally verified by Oxford BioMedica plc (the “Company”) or any other person. Accordingly, no representation or warranty, expressed or implied, is made as to the fairness, accuracy, completeness or correctness of the information and opinions contained in this presentation, and no reliance should be placed on such information or opinions. Further, the information in this presentation is not complete and may be changed. Neither the Company nor any of its respective members, directors, officers or employees nor any other person accepts any liability whatsoever for any loss howsoever arising from any use of such information or opinions or otherwise arising in connection with this presentation.

This presentation may contain forward-looking statements that reflect the Company’s current expectations regarding future events, its liquidity and results of operations and its future working capital requirements. Forward-looking statements involve risks and uncertainties. Actual events could differ materially from those projected herein and depend on a number of factors, including the success of the Company’s development strategies, the successful and timely completion of clinical studies, securing satisfactory licensing agreements for products, the ability of the Company to obtain additional financing for its operations and the market conditions affecting the availability and terms of such financing.
Problem statement

The New York Times

- Gene and cell therapy revolution
 - £9 -14 bn by 2030
- Market expansion driven by recent approvals, driving significant growth:
 - Gene & gene-modified cell therapy sector raised $7.8 Bn YTD 2018 (34% increase YOY)
 - Surge in demand for lentiviral vectors
 - Greatly underpinned by the success of the T-cell therapies
- OXB estimates the lentiviral vector bioprocessing market
 - $200m in 2017 and will grow to $800m by 2026

Source: Q3 2018 Data Report, Alliance for Regenerative Medicine

Gene Therapy Hits a Peculiar Roadblock: A Virus Shortage

Source: Oxford BioMedica management estimates
Agenda

1. Company overview & facilities
2. LentiVector® gene delivery platform
3. Manufacturing strategy considerations
4. Scale-up & manufacturing challenges
5. Suspension process development – USP considerations
6. – DSP considerations
7. Development of advanced process analytical technologies
8. Concluding remarks
Oxford BioMedica – An overview

>20 years as a specialist in lentiviral vectors

- **Founded** in 1996, based in Oxford, UK, IPO on LSE April 2001 (OXB.L)
- **Mission** – Delivering life-changing gene therapies to patients
- **Core LentiVector® technology platform** based on lentiviral vector *in vivo* and *ex vivo* gene delivery system
 - 1st world-wide to administer lentiviral vector gene therapy *in vivo* (both brain and eye)
 - 1st approved advanced therapy in the US using LentiVector® enabled technology, [Novartis’s KYMRIAH® (tisagenlecleucel)]
 - 1st commercial supplier of lentiviral vectors, post CAR-T approval
- >400 patients treated by Oxford BioMedica or by its partners
- **Four** Phase I/II studies completed with encouraging patient safety and efficacy

LentiVector Enabled gene delivery platform

- **IP** – extensive IP comprising both patents and know-how
- **Facilities** – state-of-the-art bioprocessing and laboratory facilities
- **Employees** – >400 full time employees
- **Capabilities** – Development, Manufacture, Analytics, Quality (lentiviral vectors)
Oxford BioMedica facilities in the UK

Windrush Court
- Corporate HQ & Laboratories
 - 71,955 sq.ft (6,684 sq.m)
- GMP Warehouse Hub
 - 2,691 sq.ft (250 sq.m)
- GMP QC Release & stability testing facilities

Harrow House & Chancery Gate
- 19,375 sq.ft (1,800 sq.m)
 - GMP production facility
 - Two clean room suites
 - GMP QC microbiology laboratories
 - Raw material testing
 - GMP cold chain warehouse & office space

Yarnton
- 18,300 sq.ft (1,700 sq. m)
 - GMP production facility
 - Two clean room suites
 - GMP QC microbiology laboratory
 - 1Q2019 implementation of suspension platform

Source: https://resources.oncourse.iu.edu/access/content/user/leema/profilepage/oxford.html
Oxford BioMedica facilities in the UK

Innovation Centre
- 33,000 sq.ft (3,066 sq. m)
- Located adjacent to Windrush Court
- Offices & Laboratories
- Allows for further expansion of R&D and platform innovation activities on one site

The Future “OXBox”
- 84,000 sq.ft (7,800 sq.m).
- Phase I – 45,000 sq. ft (4,200 sq. m)
- GMP production facility
- Four clean room suites
- Two Fill & Finish suites
- Offices, warehousing and QC laboratories

(Under construction – operational early 2020)

Source: https://resources.oncourse.iu.edu/access/content/user/leema/profilepage/oxford.html
Strategy: Leveraging our LentiVector® Enabled delivery platform

LentiVector® Platform

IP – patents and know-how | Facilities | Expertise | Quality systems

Arising IP

R&D Investment
Technical Developments

Arising IP

Technical and scientific knowledge transfer

Investment into internal & external assets up to early clinical stage

Spin out/out-licence

Product development

Product development partner

Platform and process development

Partners’ Programmes

Multiple income streams
Process development fees
Process development incentives
Bioprocessing revenues
Royalties

OXB products

Upfront & milestones
Royalties
Development funding

Advancing Manufacture of Cell and Gene Therapies IV, ECI, Coronado, CA, USA, January 27-31 2019
Gene and cell therapy technologies

Oxford BioMedica is involved at early stage of development of lentiviral based products either our own or with partners – strong IP position

Oxford BioMedica’s LentiVector® Platform

In vivo & Ex vivo development

- Direct administration in vivo of lentiviral vectors to target organs such as the eye, brain, liver and lung
- Administration ex vivo to target stem cells, T-cells and other cell types
- Permanent modification of dividing and non-dividing cells
- Broad tissue tropism
- Single administration with sustained or permanent efficacy
- No toxicity or adverse immune reaction

Lentiviral vectors vs AAV vectors

<table>
<thead>
<tr>
<th></th>
<th>Lentiviral Vectors</th>
<th>AAV Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient in vivo gene delivery</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Safe and well tolerated</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Large therapeutic payload</td>
<td>✓ ✓ ✓</td>
<td>✗</td>
</tr>
<tr>
<td>No pre-existing immunity</td>
<td>✓ ✓ ✓</td>
<td>✗</td>
</tr>
<tr>
<td>Permanent modification of dividing cells</td>
<td>✓ ✓ ✓</td>
<td>✗</td>
</tr>
<tr>
<td>IP protection</td>
<td>✓ ✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ease of manufacture</td>
<td>✓</td>
<td>✓ ✓ ✓</td>
</tr>
</tbody>
</table>
OXB’s LentiVector® gene delivery platform

- Codon-optimised gag-pol
- Mutated WPRE
- SIN-LTR
- Next generation vector engineering
- TRiP Technology
- Producer and packaging lines
- Transient vector production: Adherent/serum Suspension/serum free 200L bioreactors
- State of the art DSP & 2000x concn

- Clinical/commercial ready process development and characterisation
- OXB vectors familiar to regulators

- TRiP System

Advancing Manufacture of Cell and Gene Therapies IV, ECI, Coronado, CA, USA, January 27-31 2019
Cohort 2
Dose
Administration
3 months (UPDRS)
6 months (UPDRS)
1 year (UPDRS)
2 years (UPDRS)

1, n=3
Original
Mean 27%
Max. up to 30%
Mean 30%
Max. up to 50%
Mean 29%
Max. up to 44%

2, n=3
Original
Mean 28%
Max. up to 53%
Mean 34%
Max. up to 53%
Mean 29%
Max. up to 56%

3, n=3
Enhanced
Mean 26%

OXB LentiVector® platform – safety features

Minimal LentiVector system
- Third generation
- Separated on 4 plasmids with minimal sequence homology

Genome cassette
- Minimal viral nucleic acid (RNA) remaining
- No viral open reading frames or lentiviral enhancers
- Self inactivating LTR
- Mutated WPRE

Gag-pol
- Codon optimised gag-pol
- No sequence homology with genome cassette

Contains only ~ 10% (861 bp) of wild type genome
• During manufacture, transgene is normally expressed
• Can reduce vector yield activity, and impact product purity and yield
• Ideally transgene expression should be repressed to allow consistent vector production and purification, irrespective of transgene identity
• **Transgene Repression in vector Production [TRiP] cell system** is used to recover vector titres compromised by transgene expression
• Bacterial protein TRAP and RNA binding sequence inserted within transgene leader sequence

TRiPLenti

- Also available: TRiP Retro, TRiP Adeno, TRiPAAV

Source: Published PCT number WO 2015/092440
Maunder HE et al., Nat Coms 2017

Potent repression of GFP transgene in cells transfected with TRiP system components
Transgene Repression In vector Production

HIV-1

Improved therapeutic lentiviral vector crude titers using the TRiP system in HEK293T cells

![Graph showing improved titers](image)

EIAV

Improved therapeutic lentiviral vector crude titers using HEK293T-TRiP cells

![Graph showing improved titers](image)

Adeno

![Graph showing improved titers](image)

TRiP System™

TRiPLenti

Also available: TRiP Retro, TRiP Adeno, TRiP AAV

System expected to support any viral vector system

Source: Published PCT number WO 2015/092440
Maunder HE et al., Nat Coms 2017

Advancing Manufacture of Cell and Gene Therapies IV, ECI, Coronado, CA, USA, January 27-31 2019
Producer cell line development

Transient System
- ✓ Does not require selectable markers
- ✓ Immediate production
- ✓ Fast development timelines
- ✗ Expensive at large scale
- ✗ Resource intensive
- ✗ Generates cells with varying gene expression levels

Stable Cell Lines
- ✓ Cell ‘combinations’ can be engineered to suit purpose
- ✓ Large scale vector production over extended periods
- ✓ Reduces batch-to-batch variation
- ✓ Reduces costs
- ✓ Generates clones with high expression levels
- ? Requires lengthy cell-line stability studies
- ✗ Development time and costs can be high

Advancing Manufacture of Cell and Gene Therapies IV, ECI, Coronado, CA, USA, January 27-31 2019
Proprietary technologies: packaging/producer cell lines

- HIV packaging & producer cell lines have been developed using the ACSS
- LV production yields are equivalent or better that standard transient process
- New platform is available to partners
Manufacturing strategy considerations

Real world thinking – hypothetical example

Potential impact of indication and clinical development phase on production capacity requirements:

<table>
<thead>
<tr>
<th>Phase of clinical development</th>
<th>‘Low demand’ indication</th>
<th>‘High demand’ indication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of subjects</td>
<td>Volume (L)</td>
</tr>
<tr>
<td>Preclinical</td>
<td>12 primates</td>
<td>10-20L</td>
</tr>
<tr>
<td></td>
<td>30-60 rodents</td>
<td></td>
</tr>
<tr>
<td>Phase I/II</td>
<td>10 -15 patients</td>
<td>100L</td>
</tr>
<tr>
<td>Phase II</td>
<td>20</td>
<td>200L</td>
</tr>
<tr>
<td>Phase III</td>
<td>50</td>
<td>500L</td>
</tr>
<tr>
<td>BLA/MAA Commercial</td>
<td>100’s</td>
<td>≥1000L</td>
</tr>
</tbody>
</table>

- Manufacturing strategies are influenced by indication and development phase
- Major driver for process design/development/improvements in upstream volumetric productivity, recovery/downstream purification, sterile manufacturing, % step recoveries etc.

Assumptions:
- 1L gives approximately one dose to account for process losses, testing etc.
- USP yield improvements targeted to realise benefits in COGS and access to high demand indications

[Diagram with RESEARCH and DEVELOPMENT stages]
Late clinical & commercial supply options

Process evolution of the LentiVector® manufacturing platform

<table>
<thead>
<tr>
<th>Planar technologies</th>
<th>Fixed-bed systems</th>
<th>Suspension platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale-out based on surface area</td>
<td>Scale-up based on fixed bed compaction</td>
<td>Easy to scale-up Up to 2m³ in SUB format</td>
</tr>
<tr>
<td>Serum-containing</td>
<td>Serum containing / serum-free</td>
<td>Serum-free</td>
</tr>
<tr>
<td>More laborious, time consuming, limited monitoring of mono-layer, multiple manipulations, higher risk profile</td>
<td>Process simplification, on-line monitoring, reduced manipulations, lower risk profile</td>
<td>Batch/fed-batch or perfusion Process simplification, on-line monitoring, reduced manipulations, lower risk profile</td>
</tr>
</tbody>
</table>

Production cells
- Transient, packaging & producer cell line development
- Current adherent process with serum
- 20µm

Advancing Manufacture of Cell and Gene Therapies IV, ECI, Coronado, CA, USA, January 27-31 2019
OXB vector process development strategies

Holistic view of the development of ‘next generation’ lentiviral vector manufacturing

Production Cells
- **Transient**
 - Plasmids
 - Tfx reagent
 - Short USP phase
- **Stable**
 - Packaging cell line
 - Producer cell line

Upstream Processing
- **Suspension culture**
 - Animal
 - Component free
 - Media and feed
 - 100% single use
- **Process Control**
 - pH
 - Temperature
 - Dissolved oxygen
 - Identification of critical process parameters
- **Scale up**
 - P/V ratio
 - KLa
 - Tip speed
 - 100% Single use

Downstream Processing
- Flexible
- Scalable
- Gentle
- 100% single use
- Rapid, optimised yield
- Throughput
- Vmax / Pmax / Tmax sizing
- Membrane chemistry compatibility
- Pore size selection
- Dynamic binding capacity
- Buffer selection

Advancing Manufacture of Cell and Gene Therapies IV, ECI, Coronado, CA, USA, January 27-31 2019
Scale up & manufacturing challenges

OXB process development roadmap

- Development of rapid analytics for in-process & release testing
- Automated, high through-put cell line generation
- Stable, high producer packaging/producer cell lines
- Vector design & optimisation
- Establish media & feed platform
- Serum-free suspension culture in single-use bioreactor
- Purification development programme
- Formulation, Fill & Finish
- Scale-up Studies >200L
- Advanced Manufacturing Platform

Cohort 2
Dose Administration
3 months (UPDRS)
6 months (UPDRS)
1 year (UPDRS)
2 years (UPDRS)

1, n=3
Original Mean 27%
Max. up to 30%
Mean 30%
Max. up to 50%
Mean 29%
Max. up to 44%
Mean 20%
Max. up to 30%

2, n=3
Original Mean 28%
Max. up to 53%
Mean 34%
Max. up to 53%
Mean 29%
Max. up to 56%

3, n=3
Enhanced Mean 26%
-
Upstream considerations

Design and scale-up challenges for lentiviral vector production

Culture system
- 15 mL ambr™ bioreactor mimic and Shake flasks
- 0.5 L Bioreactors
- 7 L Bioreactors
- 50 L Single Use Bioreactors
- 200 L Single Use Bioreactors

USP Process Design Fundamentals

Vector
- Type (HIV or EIAV-based)
- Envelope pseudotype
- Vector titre
- Volumetric productivity
- Stability
- Non-infective to infective particles (P:L ratio)
- Aggregation
- Shear effects

Cells
- Cell line
- Concentration
- Biomass
- Cell viability
- Cell debris
- Cell aggregation
- Shear effects

Medium
- Medium components
- Serum or serum-free
- Anti foam aspects
- Transfection reagent
- Induction reagent

Operation
- Adherent or suspension
- Transient transfection
- Packaging/producer
- Number of harvests
- Volume processed
- Batch
- Fed batch
- Perfusion
- Concentrated fed batch

Contaminants
- Nucleic acids
- Process component toxicity
- Process related impurities
- Host cell protein
- Endotoxins
- Total protein

Characteristics of feed stream impacts design of purification strategy

Advancing Manufacture of Cell and Gene Therapies IV, ECI, Coronado, CA, USA, January 27-31 2019
Access to stable, high producing packaging/producer cell lines

- Justification for investment in stable cell line development has to be evaluated case by case based on predicted patient population size
- Automation of clone selection process (ACSS)

Scale-up of transient transfection processes

- Development of a stable producer cell line removes this constraint, enabling process refinements such as higher cell density, fed-batch and perfusion
- Optimisation of transfection step using DoE studies
 - Minimises costs (DNA, transfection reagents) on scale up
- Automation reduces operator-dependence and minimises variability (suspension process)

Envelope proteins (such as VSV-G) are often cytotoxic

- DoE studies to determine optimum plasmid amounts for transfection

Other LV packaging components (Rev, Gag/Pol) induce extra metabolic burden

- Regulation of expression of LV packaging components (Rev, Gag/Pol)

Process component toxicity

- Transfection & induction reagents
Suspension process development
Continuous process improvement
Suspension Process Development – DSP considerations

Functional lentiviral vector Particles

By-product toxicity

Vector stability

Process related impurities

VSV-G vesicles / TBS

Vector heterogeneity

Significant concentration of gene therapy to attain clinical efficacy, especially for in vivo applications

Protein aggregates

Inactive / empty particles

Significant concentration of gene therapy to attain clinical efficacy, especially for in vivo applications

Ineffective / empty particles

Aggregates

Suspension Process Development – DSP considerations

Cohort 2

Dose Administration

3 months (UPDRS)

6 months (UPDRS)

1 year (UPDRS)

2 years (UPDRS)

1, n=3

Original

Mean 27%

Max. up to 30%

Mean 30%

Max. up to 50%

Mean 29%

Max. up to 44%

Mean 20%

Max. up to 30%

2, n=3

Original

Mean 28%

Max. up to 53%

Mean 34%

Max. up to 53%

Mean 29%

Max. up to 56%

3, n=3

Original

Mean 26%

- -

Mean 29%

- -

Mean 20%

Max. up to 30%
Lentiviral vector product properties

Process development and manufacturing challenges

- Family: Retroviridae
- Genus: Lentivirus
- Enveloped
- Size: ~ 80 - 120 nm in diameter
- Genome: Two copies of positive-sense ssRNA inside a conical capsid
- Strong net negative charge
- Shear sensitivity
- Temperature sensitivity (inactivation) – product stability
- Freeze-thaw sensitivity
- Salt sensitivity (v. narrow range)
Lentiviral vector product properties

Process development and manufacturing challenges cont’d

- Vector stability
 - Need to develop « soft » production methods
 - Minimise risk of high shear velocities, eddies, gas-liquid interfaces etc.
 - Reduce residence time in chromatography columns by using membrane chromatography or alternatives

- Sensitivity to temperature, pH and high salt, gas-liquid interfaces, shear effects
 - Avoid unwarranted intermediate storage steps
 - Minimise overall processing time
 - Add excipients or sugars into final formulation for cryopreservation
 - Develop formulation to stabilise vector at ambient temperature and upon freeze-thawing
Lentiviral vector product properties

Process development and manufacturing challenges cont’d

- Sensitivity to high salt concentration
 - Dilute vector after high salt contact as soon as possible
 - Use weak anion-exchangers (DEAE) and milder elution conditions
 - Use flow-through purification methods

- Sterility assurance issues
 - Terminal filtration using one or more 0.2 µm sterilising-grade filters can be technically challenging
 - Vector particles are relatively large (e.g. an average diameter of approx. 120 nm) compared to the maximal pore size of sterilising grade filters (i.e. 200 nm)
 - Aggregation – formulation buffer considerations important
 - Can lead to unacceptable product loss if the product is sterile-filtered at high concentration
Schematic of Serum-free, Suspension Process (200L Scale)

GMP manufacturing process for clinical supply

[Diagram showing the GMP manufacturing process]
Sterile Manufacturing Process (Aseptic Fill & Finish)

GMP manufacturing process for clinical supply

1. Vial to FDP: ~2000-fold volume concentration factor
2. Final volume determined by number of Ultra-diafiltered Drug Substance (UDFDS) lots and test data
Industrial Viral Vector Manufacturing using Advanced Process Analytical Technologies

- 2-year £2M collaboration project co-funded by Innovate UK
- Consortium led by OXB includes the CGTC and Synthace Ltd
- Apply novel advanced technologies to further evolve OXB’s proprietary suspension LentiVector® platform
- Support intensification of manufacture and drive higher viral titre yields to enable maximal productivity whilst limiting the need for increased process scale and higher capital costs.
 - Real time in-process monitoring
 - Improved product knowledge
 - Better process understanding and control
 - Improved consistency of manufacture
 - Optimised media and feeding strategies
 - Reduced product cycle times
 - Higher volumetric productivity and yields
 - Reduced COGS
Industrial Viral Vector Manufacturing using Advanced Process Analytical Technologies

- Temp
- pH
- DO
- Raman spectroscopy
- RI spectroscopy

Multivariate analysis

Big data analytics
In silico modelling
Real-time in-process monitoring
Adaptive control

Omics analysis

Metabolomics
Transcriptomics

Chemometrics
Process fingerprint development
Concluding remarks

• Gene and cell therapy has reached the stage where several very promising therapies have reached the commercial/market supply phase. However many challenges remain.

• OXB’s know-how and technologies in lentiviral vector development, production and analytics in addition to its ability to manufacture commercial quantities of viral vectors, provides significant competitive advantage.

• OXB is a technology innovator with ongoing investment to gain increased understanding enabling further improvements to the LentiVector® gene delivery platform.

• OXB recently completed a net £19.3m capital raise to fund the construction of additional manufacturing capacity (OXBox facility).

• This investment with Innovate UK viral vector grant support for OXBox will enable OXB to maintain its global leading position, and to be well-positioned to meet future demand.
Cohort 2
Dose Administration
3 months (UPDRS)
6 months (UPDRS)
1 year (UPDRS)
2 years (UPDRS)

1, n=3
Original
Mean 27%
Max. up to 30%

2, n=3
Original
Mean 28%
Max. up to 53%

3, n=3
Enhanced
Mean 26%

Contact us
Peter Jones
Head of Operational Strategy
+44 (0) 1865 783 000
p.jones@oxb.com
Further information:
http://www.oxfordbiomedica.co.uk/