Towards fluorescence molecular in vivo liquid biopsy of circulating tumor cells

Mark Niedre
Northeastern University, USA, m.niedre@northeastern.edu

Follow this and additional works at: https://dc.engconfintl.org/optics_2023

Recommended Citation
Towards Fluorescence Molecular *in vivo* Liquid Biopsy of Circulating Tumor Cells

Mark Niedre, Ph.D.
Professor, Department of Bioengineering
Northeastern University, Boston, MA, USA
Metastasis is responsible for most (~90%) cancer-related deaths

- **Hematogenous metastasis** mediated by CTCs
- Extremely rare! ~1-100 CTCs/mL
“Liquid Biopsy” Methods Are Field Standard

Liquid biopsy of CTCs:

- **Blood sample**
- **+ Analysis**

Implicitly assumes that:

1) The number of CTCs in a (~7.5mL) blood sample is representative of the entire peripheral blood.

2) The number of CTCs in PB is approximately constant in the time around the blood draw.

Not generally true
Diffuse In Vivo Flow Cytometry (DiFC)

- **Idea:** use *diffuse light* to sample large blood vessels and detect rare *fluorescent* CTCs.
- Large arteries and veins have **hundreds of µL / min** blood flow (~2mL total in mouse)

Tail Cross Section

- Ventral caudal artery ~ 1mm deep
DiFC Instrument

Fiber probe

Probe 1

Probe 2

3mm

Source Fiber

BP-f

LP-f

Detection Fibers (x8)

Asph

0.5X playback speed

Northeastern University
DiFC Data Processing

- Determine direction (+ speed, depth)
- Reduces false-positives (FAR ~1/hour)
Multiple Myeloma Xenograft Model

Inject 5 x 10^6 MM.1s GFP+ Luc+ cells i.v.

N = 2 cohorts x 4 mice each = 8 mice

Allow MM to grow over 5 weeks:

Fluorescence monitoring of rare circulating tumor cell and cluster dissemination in a multiple myeloma xenograft model in vivo
Summary - DiFC

DiFC uses diffuse light to enumerate very rare fluorescently-labeled circulating cells

Advantages:
+ Can sample the entire peripheral blood volume in ~15 min (~100 μL/min)
+ Works on bulk tissue: back-illumination geometry
+ Simple measurement, easy to align

Disadvantages:
- Requires fluorescence cell labeling (e.g. GFP)**
- No images: data is “event detection”
- Does not capture CTCs (phenotyping)
Human Translation of DiFC?

DiFC technology is scalable (in principle*):
- diffuse NIR light
- epi-illumination
- Sensitivity 2-4 mm

Could sample *hundreds of mL blood per min* continuously

Fernando Ivich
BioE-PhD

Signal and measurement considerations for human translation of diffuse *in vivo* flow cytometry
Journal of Biomedical Optics

BUT - this would require highly *sensitive* and specific molecularly-targeted CTC contrast agent

Consider: ~10^6 WBCs vs ~10 CTCs per mL blood

Good news: these may already exist!

- Major recent advances in intraoperative cancer surgery *fluorescence guided surgery; FGS*
OTL38 Fluorescent Molecular Probe

- FR-α targeted small-molecule molecular probe for guided surgery
- Near-infrared absorption and emission
- FDA approved in 2021 FGS of ovarian and lung cancer ("Cytalux")
OTL-38 Molecular Probe for DiFC?

OTL38 (and analogs) have high reported affinity for CTCs in blood\(^1\)

R21CA246413
NIH-NCI IMAT Clinical and Translational Exploratory / Developmental Studies

New NIR DiFC Design*:

- 21 fiber double collection ring
- Low AF lens/filter design

References

Note

OTL 38 (and analogs) have high reported affinity for CTCs in blood. This new NIR DiFC Design involves a 21 fiber double collection ring and a low AF lens/filter design.
L1210A (FR+) CTCs with OTL38

- Clear detection with OTL38 “pre-labeled” CTCs
- No false positive detections from unlabeled CTCs
L1210A (FR+) CTCs with OTL38

- (At least some) true-positive labeling and detections
- Few false positives (~2/hr) or non-specific labeling with OTL38
Summary - DiFC with OTL38 in Mice

• Fewer detections due lower peak amplitude (binding) and noise from injected / unbound OTL38
• More testing is needed – *but* early data is promising
FGS Contrast Agent Pipeline

Fluorescence Image-Guided Surgery – a Perspective on Contrast Agent Development

Connor W. Bartha, Summer L. Gibbsa,b,c

CTC / CHC Specific Contrast Agents:

Summer Gibbs
OHSU
Melissa Wong
OHSU

Kuni Foundation Grant: “Noninvasive Quantification of Circulating Cancer Cells for Early Detection & Treatment Monitoring”
“But, why not just do liquid biopsy?”

-Reviewer Number 3
CTC Short-Term Dynamics

Lewis Lung Carcinoma xenograft model

5x10^6 LLC Cells s.c. LL/2.Luc.GFP (Imanis Life Sciences)

Scan Time (Minutes)

Detections

= acquisition break
Very brief summary:

- Estimating CTC numbers from a small (5%) sample is inaccurate*
- CellSearch uses 0.15% b.v. (7.5 mL of a 5L human b.v.)
To Elaborate Slightly

In general, even with ideal statistics*, sampling more blood is more **accurate** and **sensitive** for rare CTCs:

DiFC shows that CTC numbers may **fluctuate significantly** over minutes, hours, days.

*Primary axes are logarithmic.
Acknowledgements

Graduate Students
Amber Williams
Joshua Pace
Roshani Patil
Fernando Ivich
Xuefei Tan
Jane Lee
Jessica Fitzgerald
Carolin Hartmann, TUM
Eric Zettergren
Mark (Max) Kellish

Undergraduate Students
Malcolm Schumel
Zihang Fang
Rebecca Sung

Fiber Probe Design
Eric Marple, EM-Vision LLC

On Target Laboratories
EC-17 and OTL-38 probes

Purdue University
Prof. Philip S. Low
Dr. Madduri Srinivasarao

Mass General Hospital
Prof. Charles P. Lin

Northeastern
Prof. Eduardo Sontag
Prof. Chiara Bellini

Dartmouth College
Prof. Scott Davis
Brook Byrd

NIH-NCI - 1R01CA260202 (Niedre)
NIH-NCI - R21CA246413 (Niedre)
NIH-NIBIB - R01EB014186-01A1 (Clark, Niedre)