Investigation of SCC of high strength aluminum alloys by means of slow strain rate test and cyclic anodic polarization in combination

Monica Trueba
Independent Scientist, Italy, mokatrueba@gmail.com

Guido Russo
Università degli Studi di Milano, Italy

Stefano P. Trasatti
Università degli Studi di Milano, Italy

Sergio Lorenzi
Università deli Studi di Bergamo, Italy

Marina Cabrini
Università deli Studi di Bergamo, Italy

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/sacd_v

Part of the Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Stress-Assisted Corrosion Damage V by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Monica Trueba, Guido Russo, Stefano P. Trasatti, Sergio Lorenzi, Marina Cabrini, and Antonietta Loconte

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/sacd_v/11
Investigation of SCC of high strength Aluminum Alloys by means of Slow Strain Rate test and Cyclic Anodic Polarization in combination

M. TRUEBAa,b, G. RUSSOb, S.P. TRASATTIb, S. LORENZIc, M. CABRINIc, A. LO CONTEd

aIndependent scientist, Italy
bUniversità degli Studi di Milano, Dipartimento di Chimica, Milan, Italy
cUniversità degli Studi di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, Dalmine (Bergamo), Italy
dPolitecnico di Milano, Dipartimento di Meccanica, Milan, Italy

Hernstein, 2018
Single cycle anodic polarization and repassivation properties

Halide film → Oxide film at pit bottom

Letter E (V) Mz+ O2- Metal

Letter E (V) H2O Metal

Metal

Solution

Halide film

Oxide film at pit bottom

Letter E (V) I (A) Solution

Single cycle anodic polarization (Pitting Scan, PS)

Eptp - thermodynamic driving force of Al dissolution on freshly created (filmed) surface

iptp ∝ rate hydrolysis equilibrium at [Al³⁺]_crit

2Al³⁺ + H₂O + OH⁻ ↔ 2Al(OH)²⁺ + H⁺

High currents driving a potential drop: compensation by Cl⁻ electromigration of local electrodissolution processes

Effective anodic charge transfer coefficient αₜₐₑffe * estimated from the steepness by the equation:

\[
\ln \left(\frac{i}{iptp} \right) = \frac{a_{eff} F}{RT} (E - E_{ptp})
\]

Increasing steepness → αₑffective → 0 (α → λ) → Accelerating action of Cl⁻

αeff = α - λ.

α - anodic charge transfer coefficient

λ - the effective kinetic order of metal dissolution with respect to [Cl⁻]
Previous studies- permanent load in bending

anodic processes localization

This work – dynamic straining
Slow strain rate test and cyclic anodic polarization (pitting scan, PS) in combination with multiple SSRT machine (4 load cells, 30 kN each)

Smooth tensile test specimen

<table>
<thead>
<tr>
<th>Alloy</th>
<th>7075-T6</th>
<th>2024-T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm)</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Elastic Modulus E (GPa)</td>
<td>74.5</td>
<td>75.7</td>
</tr>
<tr>
<td>Yield strength YS, Rp02 (MPa)</td>
<td>510</td>
<td>354</td>
</tr>
<tr>
<td>Ultimate tensile strength UTS (MPa)</td>
<td>583</td>
<td>499</td>
</tr>
<tr>
<td>Gauge section area (mm²)</td>
<td>40</td>
<td>32</td>
</tr>
</tbody>
</table>
Slow strain rate test and pitting scan in combination

Electrochemical setup

Gamry Interface 1000 multipotentiostat

Separate two compartments (Plexiglass cell)

Compartment 1: Three-electrode configuration
DC polarization

WE – tensile specimen
RE – SCE
CE – Ir-coated Ti

Compartment 2: Two-electrode configuration
Open circuit

WE – tensile specimen
RE – SCE

Working electrodes (WE)
Opposite surfaces of the tensile specimen
(geometrical area 2 cm² each)
Slow strain rate test and pitting scan in combination

Combined experiment SSRT-OCP/PS at a constant extension rate

Three-electrode configuration
Pitting scans with OCP in between during straining

- $E_i = E_{corr}$
- $i_{rev} = 2.5 \text{ mA/cm}^2$
- $E_f = -1.1 \text{ V (vs SCE)}$

Two-electrode configuration
OCP monitoring during straining

Control tests: PS (no straining), OCP (SSRT, no PS), OCP (noPS, no SSRT)

Output Data
- Load (t)
- OCP (Δt)
- $E, i, Q (\Delta t)$
- OCP (t)

Stagnant NaCl (pH 6.5)
Room T ($\geq 25 ^\circ C$)
Al 7075-T6
(5.8 Zn-2.6Mg-1.7Cu)
The strain at break and the yield strength decrease with decreasing strain rate, regardless the electrochemical perturbation.
Al 7075-T6

A closer look at

Stress relaxation/recovery events ONLY in elasto-plastic and plastic regions for \(\dot{\varepsilon} \leq 10^{-6} \text{ s}^{-1} \) with OCP/PS sequence

\[\dot{\varepsilon} = 10^{-6} \text{ s}^{-1} \quad 0.6 \text{ M NaCl} \]

\[\dot{\varepsilon} = 10^{-7} \text{ s}^{-1} \quad 0.1667 \text{ mV/s} \]

\(\Delta\sigma \approx 5 \text{ MPa} \)
\[\dot{\varepsilon} = 10^{-6} \text{s}^{-1} \quad 0.6 \text{M NaCl} \quad 0.1667 \text{mV/s} \]

Resolved spikes upon derivation of the stress – time curves
Load drop in correspondence with the anodic polarization cycle
Al 7075-T6

\[\dot{e} = 10^{-7} \text{ s}^{-1} \quad 0.1 \text{ M NaCl} \quad 0.1667 \text{ mV/s} \]

Spikes in \(\sigma/\text{dt} - t \) curves better resolved for \(\dot{e} = 10^{-7} \text{ s}^{-1} \) and with dilution of NaCl solution

The correspondence with anodic dissolution/repassivation shown in \(\log I - t \) curves

\(\sigma/\text{dt} \) decreases once localized corrosion onsets at \(E_{\text{pit}} \)
Al 7075-T6

$\dot{\varepsilon} = 10^{-7} \text{ s}^{-1}$

0.1 M NaCl 0.1667 mV/s

0.6 M NaCl 0.1667 mV/s

Chloride ions concentration influences the time interval during which $d\sigma/dt$ increases along wise with the repassivation response.
Al 7075-T6

$\dot{\varepsilon} = 10^{-7} \text{s}^{-1}$

0.1 M NaCl 0.1667 mV/s

$\varepsilon = 10^{-7}$

s

Al 7075

- T6

0.6 M NaCl 0.1667 mV/s

OCP

3 h

LT surface

Sharp cracks prevalently developed in 0.6 M NaCl
Al 7075-T6

FFT— from time to frequency domains

\[\dot{\varepsilon} = 10^{-6} \text{ s}^{-1} \]

- 1.667 mV/s
- 0.1667 mV/s
- no PS

0.6 M NaCl

\[\varepsilon = 10^{-6} \text{ s}^{-1} \]
\[\varepsilon = 10^{-7} \text{ s}^{-1} \]

0.1667 mV/s

Trace interpolation B-spline
FFT – Hanning window (satisfactory in 95% of cases)

TISA – time interval square amplitude

\[\Delta t \left(Re^2 + Im^2 \right) \]
\[n \]

Re, Im – real and imaginary parts of the transform data
n – length of the input sequence
\(\Delta t \) – sampling interval
Al 7075-T6

Comparison of OCP variation with time

0.6 M NaCl

\[\dot{\varepsilon} = 10^{-6} \text{ s}^{-1} \]

OCP tends to increase with time during dynamic straining at \(10^{-6} \text{ s}^{-1} \).

The trend is opposite for \(10^{-7} \text{ s}^{-1} \) but the negative transients are less significant in comparison to the results with no straining.
Al 7075-T6

Electrochemical potentials

0.6 M NaCl 0.1667 mV/s

\[\dot{\varepsilon} = 10^{-6} \text{ s}^{-1} \]

Typical pitting scan curves (with and without straining)
ΔE – absolute difference between a given E with and without straining
The difference tends to be less important as the strain rate decreases – nearly stationary conditions
Typical pitting scan curves (with and without straining)

\[
\text{Typical pitting scan curves (with and without straining)}
\]

\[\log |\text{ipit}| - \log t \text{ plots (blue symbols)} \]
linear relationships
slope \(\approx 1\) rehardless \(\dot{\varepsilon}\)

\[\dot{\varepsilon} = 10^{-6} \text{ s}^{-1}\]

\[\dot{\varepsilon} = 10^{-7} \text{ s}^{-1}\]

log \(|\text{icL}|\) - log t plots (pink symbols)
linear relationships
slope \(\approx 1\) all cases
No cathodic corrosion but \(H_2\uparrow\)

\[H_2O + e^- = \frac{1}{2} H_2 + OH^-\]
Kinetic properties of repassivation

\[
\dot{\varepsilon} = 10^{-6} \text{ s}^{-1}
\]

ratios \(\frac{i_{\text{ptp},\varepsilon}}{i_{\text{ptp},0}} \) and \(\frac{\alpha_{\text{eff},\varepsilon}}{\alpha_{\text{eff},0}} \) as a function of \(\varepsilon \) (\(\varepsilon \) – straining, 0 – no straining)

\[
\dot{\varepsilon} = 10^{-7} \text{ s}^{-1}
\]

Spikes in \(d\sigma/dt \) plots

Corrosion and repassivation promoted with creation of fresh surfaces due to straining

Non monotonic and similar variation of \(i_{\text{ptp},\varepsilon} \) and \(\alpha_{\text{eff},\varepsilon} \) by decreasing the strain rate
Al 7075-T6

Kinetic properties of repassivation

0.6 M NaCl 0.1667 mV/s

ratios $\frac{i_{\text{ptp}, \varepsilon}}{i_{\text{ptp}, 0}}$ and $\frac{\alpha_{\text{eff}, \varepsilon}}{\alpha_{\text{eff}, 0}}$ as a function of ε (ε – straining, 0 – no straining)

$\dot{\varepsilon} = 10^{-7}$ s$^{-1}$

The shape of the “serrations” changes in correspondence with a transition from decreasing to increasing $\frac{i_{\text{ptp}, \varepsilon}}{i_{\text{ptp}, 0}}$ and $\frac{\alpha_{\text{eff}, \varepsilon}}{\alpha_{\text{eff}, 0}}$

Decreasing $i_{\text{ptp}, \varepsilon}/i_{\text{ptp}, 0}$ and $\alpha_{\text{eff}, \varepsilon}/\alpha_{\text{eff}, 0}$

σ_{nom} (MPa)

SSRT 0.1 M

SSRT 0.6 M

SSRT-OCP/PS 0.6 M

SSRT-OCP/PS 0.1 M

Spikes in $d\sigma/dt$ plots

mean ε (mm/mm)
Al 2024-T3 (some results)
(4.4Cu-1.6Mg)
Al 2024-T3

0.6 M NaCl 0.1667 mV/s

\[\dot{\varepsilon} = 10^{-6} \text{ s}^{-1} \]

\[\dot{\varepsilon} = 10^{-7} \text{ s}^{-1} \]

Stress relaxation/recovery events
ONLY in elasto-plastic and plastic regions for \(\dot{\varepsilon} \leq 10^{-6} \text{ s}^{-1} \) with OCP/PS sequence

«Serrations» better resolved for \(\dot{\varepsilon} = 10^{-7} \text{ s}^{-1} \)
Resolved spikes upon derivation of the stress – time curves in correspondence with the anodic polarization cycle for both $\dot{\varepsilon} = 10^{-6}$ s$^{-1}$ and 10^{-7} s$^{-1}$
Final remarks

From the combination of SSRT and corrosion/repassivation sequences:

- Decrease of the strain rate and of the yield strength regardless the electrochemical perturbation
- Stress relaxation/recovery events induced with anodic polarization cycle

Under nearly-stationary conditions (slow strain and potential scan rates):

- Crack nucleation and propagation enhanced during anodic dissolution
- Stress recovery time dependent on crack morphology
- Correlation between the repassivation behavior and the characteristics of stress relaxation/recovery events
Thank you for the attention