

International Conference CO2 Summit: Technology and Opportunity Vail, Colorado June 6-10 2010

ANALYSIS OF GLOBAL WARMING MITIGATION BY WHITE REFLECTING SURFACES

<u>Federico Rossi</u>, Andrea Nicolini University of Perugia, CIRIAF Via G.Duranti, 67 – 06125 Perugia, Italy

BACKGROUND

IPCC Fourth Assessment Report say that Earth's average temperature increase is due to anthropogenic causes.

Approaches to tackle Global Warming are aimed to prevent CO₂ release into atmosphere

These methods are also supported by recent policies as:

- Emission Trading Scheme (ETS)
- Kyoto Protocol
- European 20-20-20 Programme

Are there complementary approaches to tackle Global Warming?

The answer may be found in the Earth thermal balance.

An important role is played by Earth Albedo = shortwave energy reflected by the Earth towards outer space.

• An increase on Earth albedo corresponds on Earth temperature decrease.

•The proposal is to artificially slightly modify Earth albedo in order to compensate Earth temperature increase due to Global Warming

- 1. A proper thermal balance model has been formulated which links Earth albedo to Earth temperature
- 2. A proper relation has been also proposed which links Earth albedo to CO₂ concentration variation

Energy balance (both in short and long wave spectrum) is governed by:

$$w_{3} + w_{1} + q_{3} + q_{1} - w_{2} - w_{2} - q_{2} - q_{2} = C_{atm} \cdot \frac{dT_{atm}(\tau)}{d\tau} \quad \text{(Atmosphere)}$$

$$w_{2} + q_{2} - w_{3} - q_{3} = C_{Earth} \cdot \frac{dT_{Earth}(\tau)}{d\tau} \quad \text{(Earth)}$$

MODEL MOTHER RELATIONS

$$w_{3} + w_{1} + q_{3} + q_{1} - w_{2} - w_{2} - q_{2} - q_{2} = C_{atm} \cdot \frac{dT_{atm}(\tau)}{d\tau}$$
 (Atmosphere)
$$w_{2} + q_{2} - w_{3} - q_{3} = C_{Earth} \cdot \frac{dT_{Earth}(\tau)}{d\tau}$$
 (Earth)

Earth surface (C_{Earth}) and atmosphere (C_{atm}) "<u>heat capacities</u>" represent equivalent heat capacities because only a portion of each body takes part to energy balance. Determination of C_{Earth} and C_{atm} has been carried out by calibrating the model with the climatic data reported by the Fourth Assessment Report by IPCC.

MODEL OUTPUT

By considering a steady state condition:

 T_{Earth} (Earth temperature) may be attained by the following relation:

$$T_{\text{Earth}} = \frac{-1}{\sigma_0 \alpha_3 (-1 - \rho_2 + \rho_2 (\mathbf{r}_3 \mathbf{r}_2 - \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_2 - \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_2 + \mathbf{r}_2)} [-\sigma_0 \alpha_3 \cdot (\rho_2 - \tau_2 - 1) \cdot [-\sigma_0 \alpha_3 \cdot (\rho_2 - \tau_2 - 1) \cdot \omega_1 \cdot (\mathbf{r}_3 \mathbf{r}_2 - 1) \cdot (\mathbf{r}_3 \mathbf{r}_2 - \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_2 + \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_2 + \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_3 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_$$

- α_3 infrared Earth's surface absorption coefficient
- $\vec{\rho_2}$ infrared atmosphere reflection coefficient
- ρ_3 infrared Earth's surface reflection coefficient
- σ_0 Stefan-Boltzmann constant

- τ_2 infrared atmosphere transmission coefficient
- $\bar{\omega}_1$ incoming solar flux (342 W/m²)
- r_2 atmosphere reflection coefficient in the solar spectrum
- $\bar{r_3}$ Earth's surface albedo in the solar spectrum
- atmosphere transmission coefficient in the solar spectrum

As you can see, T_{Earth} depends on r_3 (Earth Albedo) which is artificially and impactless modifiable.

$$\left(\frac{dT_{Earth}}{dr_3}\right)$$
 = Sensibility of T_{Earth} to albedo

International Conference CO₂ Summit

6-10 June 2010, Vail

Earth temperature average increase since preindustrial era to the present day is 0.67 ℃ (IPCC Fourth Assessment Report).

Albedo modification can produce a 0.67 ℃ reduction in Earth average temperature

The proposed model shows that the average absorption coefficient of Earth surface a_3 (= 1-r₃) in shortwave spectrum is to be reduced from:

0.848 to 0.834 (*a*₃').

If albedo modification is achieved by artificial "laying high albedo surfaces (albedo r = 0.9)", the required area S_r is given:

 a_3 Earth's surface absorption coefficient in the visible spectrum

$$S_r = \frac{(a'_3 - a_3) \cdot S_T}{1 - r - a_3}$$

- a_3 ' Earth's surface absorption coefficient in the visible spectrum modified by laying white reflecting surfaces
- *r* artificial surface albedo
- S_T extent of Earth's surface

 S_r is $9.36 \cdot 10^6$ km² @ r = 0.9 (This is roughly the area of USA)

International Conference CO2 Summit

To relate temperature increase to CO_2 concentration variation, the following hypothesis has been considered:

CO₂ concentration increase since preindustrial to the present day is the only cause which yielded the Earth temperature increase.

The High Albedo Surface area S_{eq} required to offset the effect of introducing in the atmosphere 1 ton of CO_{2eq} has been obtained as follows:

$$S_{eq} = \frac{S_{r}}{\Delta CO_{2eq}} = \frac{9.36 \cdot 10^{12} \text{ m}^{2}}{1.23 \cdot 10^{12} \text{ tCO}_{2eq}} = 7.6 \frac{\text{m}^{2}}{\text{tCO}_{2eq}}$$

 S_r = High Albedo Surface area required to offset a 0.67 °C Earth temperature increase.

 $\Delta CO_{2eq} = CO_{2eq}$ total mass increase from preindustrial to the present day

In terms of Radiative Forcing, a drop of 0.28 W/m² is obtained for each 10⁶ km² of surfaces with 0.9 albedo.

HOW TO ARTIFICIALLY MODIFY ALBEDO?

SOLUTIONS AND APPLICATIONS

- 1. Whitening treatment of industrial building roofs
- 2. Whitening treatment of highways and parking areas
- 3. Reactivation of unused salt lakes
- 4. Installation of new saltworks in low value areas (industrial areas or petrochemical sites on the coasts
- 5. Plantings of species with particular chromatic properties
- 6. Artificial white reflecting floating islands

(Italian patents PG2006A0086 and PG2007A0009)

6-10 June 2010, Vail

ALREADY CERTIFIED EXAMPLES

A typical reflecting painting realized on silos (Perugia, Italy)

Reflecting covering of a Total Service station (Fiorenzuola, motorway A1, Italy)

AVOIDED CO2 EMISSIONS (COMPARISON WITH RENEWABLE SOURCES)

Technology	Reference Technology (CO _{2eq} Emissions)	Avoided emissions
$(CO_{2eq} Emissions)$		gCO _{2ea} /kWh
Ribbon silicon	Combined cycle gas turbine (400 gCO _{2eq} /kWh _e)	365
$(35 \text{ gCO}_{2eq}/\text{kWh}_{e})$		
Photovoltaic mono/multicrystalline silicon (45 gCO ₂ /kWh)		355
Wind generator (6 gCO_{2eq}/kWh_e)		394
Hydroelectrical (15 gCO _{2eq} /kWh _e)		385
Thermal solar (flat collector) (20 gCO _{2eq} /kWh _t)	Boiler stoked with natural gas (230 gCO _{2eq} /kWh _t)	210

Technology	Avoided emissions	
Technology	kgCO _{2eq} /m ²	
White Reflecting Surfaces (0.9 albedo)	130	

TECHNICAL ECONOMICAL EFFECTIVENESS

The mentioned tables do not immediately allow comparison of renewable energy sources with white reflecting technology in terms of avoided CO_2 , as the former are systems to produce energy whereas the latter is a system to mitigate Earth average global temperature.

A comparison method is proposed, based on the cost required to avoid the same amount of released CO_{2eq} .

$$C_{CO2} = \frac{CP_{FR} - CP_{FF}}{E_{FF} - E_{FR}} \begin{bmatrix} c€\\ kgCO_{2eq} \end{bmatrix}$$

 $\begin{array}{lll} \mathsf{CP}_{\mathsf{FR}} & & & & & & & & \\ \mathsf{CP}_{\mathsf{FF}} & & & & & & & \\ \mathsf{Energy} \text{ unit production cost for traditional sources [c€/kWh]} \\ \mathsf{E}_{\mathsf{FR}} & & & & & & \\ \mathsf{CO}_{\mathsf{2eq}} \text{ emissions with renewable energy sources [kgCO_{\mathsf{2eq}}/kWh]} \\ \mathsf{E}_{\mathsf{FF}} & & & & & & \\ \mathsf{CO}_{\mathsf{2eq}} \text{ emissions with traditional energy sources [kgCO_{\mathsf{2eq}}/kWh]} \end{array}$

TECHNICAL ECONOMICAL EFFECTIVENESS

	Avoided CO _{2eq}
Technology	costs
	c€/KgCO _{2eq}
Ribbon silicon	59.0
Photovoltaic mono/multicrystalline	60 F
silicon	0.0
Thermal solar (flat collector)	30.0
Wind generator	3.8
Hydroelectrical	2.6
Reflecting surface made by lime paint	4.0
Reflecting surface made by vinyl	5.0

CONCLUSIONS

Albedo Control can be an important complementary method to compensate greenhouse gases effect on Earth temperature because of:

- Lower costs (4-5 c \in /KgCO_{2eq}) than renewable energy sources for avoiding the same CO₂ effect;

- Easiness and short time for installation;

- Opportunity for countries where higher levels of insulation make the system even more effective and valuable in terms of avoided CO_2

ABCD RESEARCH PROJECT

(Albedo – Building green – Control of global warming – Desertification)

A cooperation research project is going to start among Italian research centers and Tunisian scientific and operative agencies. The project main purpose are:

-verify and certify the performances of the proposed technology;

- include Albedo Control method into ETS system

International Conference CO₂ Summit

6-10 June 2010, Vail

FOR MORE INFO albedocontrol.com