Bioinspired materials for water collection, water purification and oil-water separation

Bharat Bhushan

Follow this and additional works at: https://dc.engconfintl.org/nature_inspired

Part of the Engineering Commons
Bioinspired Water Collection Methods to Supplement Water Supply

Bharat Bhushan
Ohio Eminent Scholar and Howard D. Winbigler Professor and Director NLBB

Bhushan.2@osu.edu https://nlbb.engineering.osu.edu/

Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics

© B. Bhushan
An Ominous Forecast

By 2021, more people will be using mobile phones than running water.

11th Annual Cisco Visual Networking Index (VNI) Global Mobile Data Traffic Forecast for 2016-21

Mobile phones are great for connectivity, but fraction of those with mobile phones will not have access to running water!
Introduction

- Access to a safe water supply is vital for human health.

- Some of the arid regions of the world lack adequate water supply.
- Water scarcity affects more than 40% of the global population and is projected to rise.
- It is estimated that about 30% of the global population does not have access to safe and easily accessible drinking water (UNESCO, 2019).

Percent population with access to water source in 2015 (WHO/UNICEF)
• Water consumption continues to grow because of growing population, projected to be ~8.2 billion in 2030.

• This will further result in shortage of water supply.

Water covers 70% of the Earth’s surface.

However, ~96.5% of water is saline water, contained in the oceans. For consumption, it needs to be desalinated, which is an energy-intensive process.

Fresh water accounts for ~2.5% of all water supply.

Of this, only about 0.79% exists as ground and surface water.

Furthermore, the distribution of fresh water is not uniform across the globe, e.g. ~20% world’s fresh water is found in Great Lakes in MI in the US.

• In addition to lack of availability of surface water, *clean water supply* is becoming scarce because of contamination.

• It is apparent that current supply of water needs to be supplemented to meet future needs.
To find new source of water supply, we may look to Living Nature.

- All living things require water.
- After some 3 billion years of evolution, various flora and fauna can survive in arid desert environments.
- Water supply in arid desert is supplemented by collection from fog and condensation.
Sahara desert is hot and very arid. It covers 1/3 of African continent.

Deserts have living species. Water is supplemented by fog and condensation.

Fog
- Water droplets are deposited from micro-sized water droplets in air.

Condensation
- Water droplets are formed on a surface by condensation of water vapor in air, if the surface is colder than dew point.
Number of foggy days ranging from 121 to 365.
Rate of fog water collection on desert surface ranges from 2 to 10 L m\(^{-2}\) day\(^{-1}\).

Desert nights are cold, as low as 0 - 4\(^\circ\)C, and condensation also occurs.
• Collected water evaporates as soon as sun comes out in early mornings. Before it evaporates, species have mechanisms to transport water to a location where, either it is stored or consumed.

• These species possess unique chemistry and structures on or within their body for collection and transport of water.

• We need to understand the mechanisms used in nature.

• Then, these can be used to fabricate bioinspired surfaces to supplement safe drinking water supply.

• This would be of particular interest in arid regions to develop means to harvest fog and condensation.
Lessons from Nature

Inspirations for water-collecting device

<table>
<thead>
<tr>
<th>Species</th>
<th>Mechanism</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stenocara gracilipes (Beetle)</td>
<td></td>
<td>Water droplets grow on wax-free hydrophilic bumps before being transported towards the mouth by the waxy hydrophobic surround (Hamilton III and Seely, 1976; Parker and Lawrence, 2001).</td>
</tr>
<tr>
<td>Vulpia (Grass)</td>
<td></td>
<td>Water droplets are channelled down the hydrophilic leaves towards the base of the plant and eventually reaching the roots (Ebner et al., 2011; Roth-Nebelsick et al., 2012).</td>
</tr>
<tr>
<td>Cactus</td>
<td></td>
<td>Water droplets grow on tips of small barbs before moving down onto spine and travelling towards base, due to Laplace pressure gradient and grooves, where they are absorbed (Ju et al., 2012).</td>
</tr>
</tbody>
</table>
Structures and Chemistries for Bioinspired Surfaces

• Heterogeneous wettability inspired by desert beetles
• Longitudinal grooves inspired by desert grass
• Conical geometry inspired by cactus
• Can also use triangular geometry on flat surfaces

• Measure water collection from Fog and Condensation for both conical and triangular geometries.

Fabrication of Bioinspired Surfaces (w/ Dev Gurera)

Beetle-inspired water collectors

Fabrication approach

Polycarbonate

↓

Superhydrophobic

Spray coating of methylphenyl silicone resin + 10 μm or 7 nm SiO₂ NP

↓

Superhydrophilic spots

UVO irradiation through a mask

Water CA: polycarbonate - 75°±2°, superhydrophobic - 163°±2°, superhydrophilic - wet

Material: hydrophilic acrylic polymer, water CA - 61°±2°

Cone

Grooved

Heterogeneous wettability

Hydrophobic

Superhydrophilic

Hydrophobic: vapor deposited fluorosilane
Superhydrophilic: UVO etched

Water Collection on Heterogeneous Surfaces and Cones

Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics
Fog

Apparatus for water collection from fog

20 cm

Bioinspired collector

Fog flow

Container

Analytical balance

Humidifier

0.0000 g

Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics
• Among surfaces with homogeneous wettability, superhydrophobic surface provided the highest water collection. In highly repellant surfaces, spherical droplets roll off rapidly with minimum evaporation.

• Among all surfaces, beetle-inspired surfaces provided the highest collection. Because of heterogeneity, droplets can slide/roll off the surface at a faster rate.
Conical Geometry

To study role of conical geometry, measurements on Cylinder vs. Cone

Water collection rates per unit surface area for single cylinder and cone. Measurements made over the entire region and just at the base (as in nature).

- At the base, cone collects more water than the cylinder.
- Whereas total water collection rates are comparable.

[Graph and images showing water collection rates and droplet behavior]
Cone at 45º inclination and comparison with flat surfaces

- Water collected on cone at 45º inclination is an order of magnitude larger than at 0º inclination (data presented earlier).
- The cone surface and beetle-inspired surfaces collects twice as much as water as that for a flat surface.
At 0º inclination, grooved cone has higher collection rate than ungrooved. Grooves help in channeling the water.

At 45º inclination, gravity dominates and grooves do not contribute.
At 0º inclination, conical array per cone provides higher collection than a single cone, due to cascading effect on a falling droplet.

At 45º inclination, collection rates are comparable as gravity dominates the water transport.
Triangular Geometry on Flat Surface, Condensation (w/ Dr. Dong Song)

Apparatus for water collection from condensation

- Moist air
- Sample
- Aluminum block
- Peltier cooler
- CCD Video
- ~5°C
- Water
- Heater

Single triangular pattern with heterogeneous wettability

- A: Hydrophilic
- B: Superhydrophobic

Triangular array

Rectangular vs. triangular patterns with heterogeneous wettability

RH = 85%

A: hydrophobic, B: superhydrophobic

Rectangular

Triangular (α = 9°)

14 min 36 min 51 min 57 min

18 min 85 min 86 min 93 min

- As condensation continues, droplets grow and start to coalesce into bigger droplets.
- In triangular patterns, once they are big enough to touch the pattern borders, the motion is triggered driven by Laplace pr. gradient.

Time to reservoir with lower included angle is lower because smaller droplets can touch the border earlier and start to move.
However, with lower included angle droplet size reaching the reservoir is smaller.

Effect of humidity on water condensation and transport

$\sigma = 9^\circ$

RH = 50%

<table>
<thead>
<tr>
<th>Time</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RH = 85%

<table>
<thead>
<tr>
<th>Time</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Time to reservoir is lower at higher RH because of increased condensation.
Water Collection Rate

Effect of humidity, included angle and length of triangular patterns on water condensation rate

Reservoir with 16 triangular patterns, $\alpha = 9^\circ$, $L_a = 10$ mm
$\text{RH} = 50\%$, at 450 min

Water Collection rate increases with RH, remains about the same at different included angles, and decreases with length of the patterns.
For scale-up, large nets or towers can be used to supply water to a community.
Water Collection Estimates

- In arid deserts, water collection rates are on the order of $2 \text{ L m}^{-2} \text{ day}^{-1}$.

- The bioinspired surfaces covered with conical arrays can provide collection rates at least one order of magnitude larger than that of a flat hydrophilic surface, on the order of $20 \text{ L m}^{-2} \text{ day}^{-1}$.

- For an example of $20 \text{ L m}^{-2} \text{ day}^{-1}$, by a medium size tower covered with a bioinspired surface with a surface area of 200 m^2, water collection rate would be about $4,000 \text{ L day}^{-1}$.

- If the water consumption per capita is 100 L day^{-1}, a tower can provide sufficient water for about ten families with 4 people in each family.
Portable units can be used to supply a home or a camper.

In addition, portable units can be used for

- Various defense applications, such as combat and military bases in combat zones (e.g., cost of fresh water in Afghanistan ~ $300/gallon), and

- Emergency applications, such as fire zone.
Conclusions

• Bioinspired surfaces hold tremendous promise in water collection.
• Towers and portable units can be used to supply water to a large community, a home or for defense and emergency applications.
• Significant advances in nanofabrication allows one to replicate structures of interest in bioinspiration using smart materials.

Acknowledgements

The financial support for this research was provided by National Science Foundation and the Center for Applied Plant Sciences (CAPS).
References

bhushan.2@osu.edu https://nlbb.engineering.osu.edu/