Development of high concentration liquid formulations is especially attractive for biopharmaceuticals due to their generally low bioavailability and amenability to self-administration as sub-cutaneous injections. Elevated protein concentration can be associated with increased viscosity, which becomes an important factor for protein drug product development, manufacturing and dose administration. High viscosity can be detrimental to manufacturing setups causing increased process times or failures. Dose delivery to patients are also impacted, as high viscosities, associated with high injection force can cause difficulties in self-administration or even pain. In vitro viscosity assessments are thus key to early developability efforts. However, these studies can be resource intensive due to multiple candidates, high material requirements and complex methods. Problems of high viscosity are thus often detected very late, putting pressure on project time lines and development teams. The development of reliable tools for early prediction of viscosity at high protein concentration is essential for selection of optimal candidates in a time and cost efficient way. We present here approaches to this end leveraging on data from high throughput measurements including dynamic light scattering and associated measurements/calculations.