Catalytic Pyrolysis

Sasha R.A. Kersten
Catalytic Fast Pyrolysis for fuel production

S.R.A. Kersten
June 2019, Cork

Roel Westerhof, Stijn Oudenhoven, Pushkar Marathe, Daniele Castello, Caroline Lievens, Güray Yildiz, Wolter Prins
Some concerns I had

• Limited knowledge of chemistry
 • Which reactions are catalyzed?, which ones do we want to catalyze?

• Ill defined goal
 • Stabilization of oil (?)
 • Oxygen removal (yield often neglected)
 • Production of specific compounds – aromatics (yield and separation neglected)
 • My goal = fuel precursor

• Catalysts de-activation
 • Coke, interaction with K, Cl, Ca, S, etc..

• High reactivity of pyrolysis products

• Solid catalyst - solid biomass?
 • Catalysis of what? Vapors, Gases, Aerosols?
Agenda

Results of different feeds using different catalyst (synthetic & ashes in feed) in different reactors showing that

Firstly I present experimental results without synthetic catalyst which are of interest for the interpretation of results obtained with catalyst
Equipment: pyrolysis

- 50 mg biomass
- Fast heating (5000 °C/s) by hot screen
- Rate of products leaving the reaction zone controlled by pressure (5 Pa – 1 bar)
- Very fast quenching (< 20 ms)

- 1 kg/h feed
- Fluidized bed
- (also) fast heating (10,000 °C/s)
- 0.5 – 1 bar
- Staged condensation
- 1-2 s residence time of hot vapors
Equipment: fluidized bed for catalytic pyrolysis

IN-SITU FLUIDIZED BED (ISFB)
Equipment: downer for catalytic pyrolysis

EX-SITU downer (ESD)

- Biomass
- Fluidized bed pyrolyser (500 °C)
- ESP condenser (25 °C)
- Cyclone
- Filter
- Liquid products
- Spent catalyst
- Catalyst
- Screw conveyor
- Downer (500 °C)
- Intensive cooler (-5 °C)
- Aqueous condensate
- Permanent gases
- N₂

IN-SITU downer (ISD)

- Biomass
- N₂
- ESP condenser (25 °C)
- Cyclone
- Filter
- Liquid products
- Spent catalyst
- Catalyst
- Screw conveyors
- Downer (500 °C)
- Intensive cooler (-5 °C)
- Aqueous condensate
- Permanent gases
Feeds and catalysts

- Pine
- Straw
- Hay
- Bagasse
- Avicel cellulose
- Cotton
- Lignins

- ZSM-5
- Na$_2$O on Al$_2$O$_3$
- Ashes, K$_2$CO$_3$

All results at 500 – 530 °C, unless stated otherwise
My model of catalytic pyrolysis

- **Processes at particle level**
 - Mass and Heat transport
 - Pyrolysis reactions
 - Catalysis by AAEMs
 - Char is a catalyst

- **Processes in vapor phase**
 - Homogeneous reactions

- **Processes on / in catalysts**

Can be studied in Screen-Heater
Influence of AAEMs on yields of lumped product
feed = cellulose

AAEMs = natural catalyst (they accumulate on the catalyst)
Influence negative ion

Potassium concentration 1000 mg kg\(^{-1}\)

C\(_{\text{glucose}}\) / C\(_{\text{cellulose}}\) (kg kg\(^{-1}\))

SH @ 500 Pa
Influence of AAEMs on sugar chemistry

Hardly sugars in contact with catalyst
Production of sugars – effect of pressure

![Graph showing the relationship between pressure (Pa) and production of sugars (YAS) and fraction of DP1 (fDP1) for acid leached bagasse.](image)

- **YAS**: Experiment (solid square) vs. Model I (solid line)
- **fDP1**: Experiment (red circle) vs. Model I (dashed line)

Key:
- 5 Pa
- Acid leached bagasse

Equation: $Y_{AS} = f_{DP1}$

Explanation: The graph illustrates the experimental data (squares) compared to the model predictions (lines) for the production of sugars (Y_{AS}) and the fraction of DP1 (f_{DP1}) under varying pressures for acid leached bagasse. The model seems to fit the data reasonably well, especially at lower pressures.
Pyrolysis of Lignin

- Processed/extracted lignins
 - Solvolysis
 - Pyrolytic

- Milled wood lignin
 (closest to native)

- Similar C, H, O

- 600 –3600 Da (weight averaged)

- 0 – 35% β-O-4

<table>
<thead>
<tr>
<th>Lignin</th>
<th>Code</th>
<th>C</th>
<th>H</th>
<th>O *</th>
<th>N</th>
<th>H/C</th>
<th><Mw> **</th>
<th>D</th>
<th>β-O-4 linkages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>1</td>
<td>66.9</td>
<td>6</td>
<td>27</td>
<td>0.1</td>
<td>1.1</td>
<td>2515</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>L-SL</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1591</td>
<td>1.7</td>
<td>-</td>
</tr>
<tr>
<td>H-SL</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3462</td>
<td>1.8</td>
<td>-</td>
</tr>
<tr>
<td>WSL</td>
<td>4</td>
<td>64.8</td>
<td>5.8</td>
<td>28.6</td>
<td>0.8</td>
<td>1.1</td>
<td>2043</td>
<td>2.0</td>
<td>8.6</td>
</tr>
<tr>
<td>L-WSL</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1449</td>
<td>1.7</td>
<td>-</td>
</tr>
<tr>
<td>H-WSL</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2601</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>PL1</td>
<td>7</td>
<td>68.1</td>
<td>6.3</td>
<td>25.5</td>
<td>0.1</td>
<td>1.1</td>
<td>725</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>L-PL1</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>670</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>H-PL1</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1047</td>
<td>1.6</td>
<td>-</td>
</tr>
<tr>
<td>PL2</td>
<td>10</td>
<td>64.8</td>
<td>6.5</td>
<td>28.6</td>
<td>0.1</td>
<td>1.2</td>
<td>616</td>
<td>1.6</td>
<td>0</td>
</tr>
<tr>
<td>L-PL2</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>588</td>
<td>1.6</td>
<td>-</td>
</tr>
<tr>
<td>H-PL2</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1241</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>SOL</td>
<td>13</td>
<td>63.9</td>
<td>5.7</td>
<td>30.3</td>
<td>0.1</td>
<td>1.1</td>
<td>1858</td>
<td>2.2</td>
<td>7.8</td>
</tr>
<tr>
<td>MWL</td>
<td>14</td>
<td>60.7</td>
<td>6.3</td>
<td>33</td>
<td><0.1</td>
<td>1.2</td>
<td>3596</td>
<td>2.5</td>
<td>34.5</td>
</tr>
</tbody>
</table>

* Oxygen content by difference: (100 − C − H − N); ** <Mw> is calculated from UV detector response; – Not measured
Molecular weight distribution

Light Lignin

Heavy Lignin

SH
MW of oil vs. MW of Lignin

‘Lignin’ on contact with catalyst is of rather small MW
Bond balance

<table>
<thead>
<tr>
<th>Oxygen Bonds</th>
<th>Milled wood lignin</th>
<th>Oil at 500 Pa</th>
<th>Oil at 1 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-aryl ether</td>
<td>34.4</td>
<td>9.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Phenylcoumaran</td>
<td>14.1</td>
<td>4.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Resinol</td>
<td>11.1</td>
<td>1.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>59.5</td>
<td>15.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

‘Lignin’ that is in contact with the catalyst hardly contains C-O-C bonds, instead it is C-C bonded
Intermediate conclusion

The catalyst is in contact with:

- Light decay products of sugars (highly oxygenated)
- Re-polymerized C-C bonded Lignin of ~ 500 Da
- Most likely aerosols
Interpretation of catalytic fast pyrolysis experiments

Pyrolysis oil

Water addition (FP)

Naturally (CFP)

Phase separation

Aqueous phase organics (APO)
O = 50 wt%
MW = 100 Da
Mainly sugar based

Oil phase organics (OPO)
O = 35 wt%
MW = 600 Da
Mainly lignin based
Our first results with ZSM-5

< 20 wt% oil yield
Oxygen content of 20 wt%

CFP and CVUP
Cracking: MWD of oils

![Graph showing MWD of oils for Thermal, Zeolite, and Na ex-situ processes.](image-url)
Coke, water & gas yields

(ESD & ISD)
Yield and Oxygen % of the aqueous phase organics

Aqueous phase organics (APO) \(\rightarrow \) coke + water + gas

No de-oxyxygenation of APO

(ESD & ISD)
Yield and Oxygen % of the oil phase organics

![Graphs showing carbon yield and oxygen content for different catalyst/biomass combinations.](ESD & ISD)
Conversion of sugars over regenerated ZSM-5
ZSM-5 + ashes
Catalytic pyrolysis
Take home messages

• Different reactor, different feedstocks, different contacting modes: never more that 20C% yield and lowest O content was 15% (10)

• The whole sugar fraction (2/3 of initial thermal oil) is lost to coke, water and gas.

• Only solution: new catalysis converting the sugar fraction into fuel.
... It is not easy being green...