Key Words: germanium, thermal oxidation, gate stack.

We have studied Ge gate stacks for many years, and demonstrated very interesting properties in Ge [1]. Recently we have published a review paper on Ge from viewpoints of device and process for CMOS applications. Through this study, we have noticed that GeO$_2$/Ge is so different from SiO$_2$/Si. It means that the oxidation kinetics of Ge should be studied carefully and understood correctly, though that of Si is almost understood.

We carried out the oxygen isotope (18O) tracing experiments in Ge oxidation process. Figure 1 shows a comparison between Si oxidation and Ge one, inspected by the SIMS. First, we prepared SiO$_2$/Si and GeO$_2$/Ge oxidized in 16O$_2$, then both were reoxidized in 18O$_2$. SIMS results clearly exhibit a significant difference of 18O profile in the oxides. The result in SiO$_2$/Si system is as expected by the Deal-Grove type kinetics, while that in GeO$_2$/Ge shows rather flat profile of 18O in GeO$_2$ and not 18O accumulation at GeO$_2$/Ge interface. The results demonstrate a significant difference of oxidation kinetics between Si and Ge.

Results suggest that Ge oxidation should be described by kinetics completely different from the Deal-Grove model. Thus, we propose for the first time a new kinetic model of thermal oxidation of Ge, considering both O-vacancy and atomic O diffusion as a function of O$_2$ pressure. The model can reasonably explain anomalous O$_2$ pressure dependence in Ge oxidation as well. Furthermore, experimental results in the oxidation of SiO$_2$/GeO$_2$/Ge, GeO$_2$/SiO$_2$/Si and GeO$_2$/SiO$_2$/Ge stacks are also. They also strongly support the new kinetic model of Ge oxidation. This is critically important for achieving high quality Ge gate stacks, as the Deal-Grove model have played a significant role in Si technology.

This work was partly supported by JSPS-Kakenhi-Kiban(A).

![Figure 1 18O isotope tracing experiment in Si and Ge with SIMS. In Si, it is clearly reproduced that 18O atoms are accumulated at the interface and that only a slight amount of 18O exists in the film. While in Ge, 18O has a rather flat profile inside GeO$_2$ film.](image-url)