Engineering Conferences International ECI Digital Archives

Integrated Continuous Biomanufacturing V

Proceedings

10-12-2022

Design considerations when scaling from 3-L to 3000-L or larger

Kenneth Lee AstraZeneca, USA, ken.lee@astrazeneca.com

Follow this and additional works at: https://dc.engconfintl.org/biomanufact_v

Recommended Citation

Kenneth Lee, "Design considerations when scaling from 3-L to 3000-L or larger" in "Integrated Continuous Biomanufacturing V", Ana Azevedo, Técnico Lisboa, Portugal; Jason Walther, Sanofi, USA; Rohini Deshpande, Amgen, USA Eds, ECI Symposium Series, (2022). https://dc.engconfintl.org/biomanufact_v/ 74

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Integrated Continuous Biomanufacturing V by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Design considerations when scaling from 3L to 3000L or larger

Ken Lee

Bioprocess Technologies & Engineering, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, US

12 October 2022

What is AstraZeneca's continuous process?

- Fully continuous process for Drug Substance
- First iteration is analogous to batch processing just continuous!
 - Defined unit operations are still identifiable

• Platform continuous process defined to enable entire portfolio

"Why aren't we doing this with every molecule?"

Pascal Soriot, CEO of AZ

What does AZ's continuous process look like?

Platform NGM Upstream Process

- Multiple concentrated feeds
- TFF cell retention
 - Levitronix pump
- Fixed perfusion rate
- Feed flowrates based on consumption rate

Scaling bioreactors

- Lots of knowledge in scaling bioreactors!
 - P/V
 - k_La
 - OUR
 - mixing time
- Cooling
 - Assuming 25 pW/cell ¹
 - 2.2 °C/hr @ 10⁸ cells/mL if no cooling
- antifoam usage, and foam-out mitigations

Scaling cell retention device – from 3L

• Scale by filter area

Scale (L)	Working volume (L)	Filter area (m²)
3	2	0.098
3000	3000	147.0

Scaling cell retention device – from 3L

Scaling cell retention device – from 3L

Scaling cell retention device

can we scale differently?

Scaling cell retention device

• Increasing hollow fiber length exacerbates the problem

Scaling cell retention device

• Increasing hollow fiber length exacerbates the problem

3U

Reduce ΔP at inlet and outlet

- Change the way hollow fibers are configured
 - Reducing hollow fiber length will increase overall lifetime of the filter

Change hollow fiber configuration

- Reducing hollow fiber height reduces TMP significantly
- Improves product sieving

stack #2

Reduce ΔP at inlet and outlet

- Change the way hollow fibers are configured
 - Reducing hollow fiber length will increase overall lifetime of the filter
- Reduce flowrate
 - Reduces TMP at the extremes

Reduce flowrate

- Lower flowrate improves sieving
- Simple to implement

data from Andrea Squeri

Reduce ΔP at inlet and outlet

- Change the way hollow fibers are configured
 - Reducing hollow fiber length will increase overall lifetime of the filter
- Reduce flowrate
 - Reduces TMP at the extremes
- Exert equal pressure on the permeate
 - Significantly reduce Starling flow / Darcy flow

Exert equal pressure on the permeate: HPTFF

¹ van Reis et al., 1997, Biotechnol Bioeng

FFF control HPTFF

12

14

18

Strengths and weaknesses

Configuration	Strength	Weakness
Stacked fibers	Simple implementationModerate improvement to sieving	 More hardware: permeate pumps Increased pressure head = increased shear rate
Low flowrate	Simple implementationNo additional hardware required	Significant oxygen limitation
HPTFF	 Significant improvement to sieving 	Significantly more complex implementation

Additional to ICB2022 presentation: increasing lumen diameter also reduces pressure across the hollow fiber and therefore reduces Starling flow / Darcy flow

Addressing DO exhaustion

data from Andrea Squeri

Addressing DO exhaustion

- Improving DO in the recirculating loop also helped improve productivity
- Does not affect sieving

Standard configuration

• Original setup requires 14 pumps and 14 hollow fibers

Combining everything – stage 1

- Stage 1 enables reduced recirculating pumps
 - Stacking hollow fibers

- stacked hollow fibers increase residence time
 - Introduce gas flow into recirculating loop

Combining everything – stage 2

• Stage 2 enables further reduction in recirculation pumps

• Higher residence times mitigated by loop gassing

acknowledgements

• BTE-Upstream

- Andrea Squeri
- Jimmy Vu
- Sam Preza
- Alex Gadberry
- Dominique WuDunn

• BTE-Modelling

- Mike Mollet
- Ashna Dhingra
- Nick Guros
- Adrian Joseph

• Support functions

- Media prep
- Bioreactor prep
- Sponsors
 - Jon Coffman
 - Venkat Raghavan

- BTE-Downstream
 - Irina Ramos
 - Ujwal Patil
 - Nikunj Sharma

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com