Design considerations when scaling from 3-L to 3000-L or larger

Kenneth Lee
AstraZeneca, USA, ken.lee@astrazeneca.com

Follow this and additional works at: https://dc.engconfintl.org/biomanufact_v

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Integrated Continuous Biomanufacturing V by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Design considerations when scaling from 3L to 3000L or larger

Ken Lee

Bioprocess Technologies & Engineering, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, US

12 October 2022
What is AstraZeneca’s continuous process?

• Fully continuous process for Drug Substance
• First iteration is analogous to batch processing – just continuous!
 • Defined unit operations are still identifiable

• Platform continuous process defined to enable entire portfolio
“Why aren’t we doing this with every molecule?”

Pascal Soriot, CEO of AZ
What does AZ’s continuous process look like?

Stage 1

Stage 2

ProA wash

SPTFF

ProA elution

ProA

Wash

DS

Formulation buffer

Dialysis

Concentration

Virus filter

AEX wash buffer

AEX

SPTFF

CM

Desalting / concentration

AEX wash buffer

AEX

AEX equil

CEX

Detergent VI

ProA wash

ProA

Nano-particles

Wash

Concentration

Virus filter

Dialysis

Formulation buffer

Desalting / concentration

AEX wash buffer

AEX

AEX equil

CEX

ProA wash

ProA

Nano-particles

Wash

Concentration

Virus filter

Dialysis

Formulation buffer

Desalting / concentration

AEX wash buffer

AEX

AEX equil

CEX

ProA wash

ProA

Nano-particles

Wash

Concentration

Virus filter

Dialysis

Formulation buffer

Desalting / concentration

AEX wash buffer

AEX

AEX equil

CEX

ProA wash

ProA

Nano-particles

Wash

Concentration

Virus filter

Dialysis

Formulation buffer

Desalting / concentration

AEX wash buffer

AEX

AEX equil

CEX

ProA wash

ProA

Nano-particles

Wash

Concentration

Virus filter

Dialysis

Formulation buffer

Desalting / concentration

AEX wash buffer

AEX

AEX equil

CEX

ProA wash

ProA

Nano-particles

Wash

Concentration

Virus filter

Dialysis

Formulation buffer

Desalting / concentration

AEX wash buffer

AEX

AEX equil

CEX

ProA wash

ProA

Nano-particles

Wash

Concentration

Virus filter

Dialysis

Formulation buffer

Desalting / concentration

AEX wash buffer

AEX

AEX equil

CEX

ProA wash

ProA

Nano-particles

Wash

Concentration

Virus filter

Dialysis

Formulation buffer

Desalting / concentration

AEX wash buffer

AEX

AEX equil

CEX

ProA wash

ProA

Nano-particles

Wash

Concentration

Virus filter

Dialysis

Formulation buffer

Desalting / concentration

AEX wash buffer

AEX

AEX equil

CEX
Platform NGM Upstream Process

- Multiple concentrated feeds
- TFF cell retention
 - Levitronix pump
- Fixed perfusion rate
- Feed flowrates based on consumption rate
Scaling bioreactors

• Lots of knowledge in scaling bioreactors!
 • P/V
 • $k_L a$
 • OUR
 • mixing time

• Cooling
 • Assuming 25 pW/cell 1
 • 2.2 °C/hr @ 10^8 cells/mL if no cooling

• antifoam usage, and foam-out mitigations

1 R. B. Kemp, 1993, Thermochimica Acta
Scaling cell retention device – from 3L

• Scale by filter area

<table>
<thead>
<tr>
<th>Scale (L)</th>
<th>Working volume (L)</th>
<th>Filter area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>0.098</td>
</tr>
<tr>
<td>3000</td>
<td>3000</td>
<td>147.0</td>
</tr>
</tbody>
</table>
Scaling cell retention device – from 3L
Scaling cell retention device – from 3L

Image by Andree Wallin
Scaling cell retention device

can we scale differently?

- $P_1 >> P_2$
- $P_3 \approx P_4$
- $P_1 > P_3$
- $P_2 < P_4$
Scaling cell retention device

• Increasing hollow fiber length exacerbates the problem
Scaling cell retention device

- Increasing hollow fiber length exacerbates the problem
- Once fouling starts flux changes unpredictably

Data from Ashna Dhingra

Data from Dominique WuDunn
Reduce ΔP at inlet and outlet

• Change the way hollow fibers are configured
 • Reducing hollow fiber length will increase overall lifetime of the filter
Change hollow fiber configuration

- Reducing hollow fiber height reduces TMP significantly
- Improves product sieving

Data from Jimmy Vu
Reduce \(\Delta P \) at inlet and outlet

- Change the way hollow fibers are configured
 - Reducing hollow fiber length will increase overall lifetime of the filter
- Reduce flowrate
 - Reduces TMP at the extremes
Reduce flowrate

• Lower flowrate improves sieving
• Simple to implement

data from Andrea Squeri
Reduce ΔP at inlet and outlet

- Change the way hollow fibers are configured
 - Reducing hollow fiber length will increase overall lifetime of the filter

- Reduce flowrate
 - Reduces TMP at the extremes

- Exert equal pressure on the permeate
 - Significantly reduce Starling flow / Darcy flow
Exert equal pressure on the permeate: HPTFF

• Based on work by Robert van Reis\(^1\)
• Hypothesis works in principle
• Requires more complex control system

\(^1\) van Reis et al., 1997, Biotechnol Bioeng
Strengths and weaknesses

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Strength</th>
<th>Weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacked fibers</td>
<td>• Simple implementation</td>
<td>• More hardware: permeate pumps</td>
</tr>
<tr>
<td></td>
<td>• Moderate improvement to sieving</td>
<td>• Increased pressure head = increased shear rate</td>
</tr>
<tr>
<td>Low flowrate</td>
<td>• Simple implementation</td>
<td>• Significant oxygen limitation</td>
</tr>
<tr>
<td></td>
<td>• No additional hardware required</td>
<td></td>
</tr>
<tr>
<td>HPTFF</td>
<td>• Significant improvement to sieving</td>
<td>• Significantly more complex implementation</td>
</tr>
</tbody>
</table>

Additional to ICB2022 presentation: increasing lumen diameter also reduces pressure across the hollow fiber and therefore reduces Starling flow / Darcy flow
Addressing DO exhaustion

14.1s residence time

data from Andrea Squeri
Addressing DO exhaustion

- Improving DO in the recirculating loop also helped improve productivity
- Does not affect sieving
Standard configuration

• Original setup requires 14 pumps and 14 hollow fibers
Combining everything – stage 1

• Stage 1 enables reduced recirculating pumps
 • Stacking hollow fibers

• stacked hollow fibers increase residence time
 • Introduce gas flow into recirculating loop
Combining everything – stage 2

- Stage 2 enables further reduction in recirculation pumps
- Higher residence times mitigated by loop gassing
acknowledgements

• BTE-Upstream
 • Andrea Squeri
 • Jimmy Vu
 • Sam Preza
 • Alex Gadberry
 • Dominique WuDunn

• BTE-Downstream
 • Irina Ramos
 • Ujwal Patil
 • Nikunj Sharma

• BTE-Modelling
 • Mike Mollet
 • Ashna Dhingra
 • Nick Guros
 • Adrian Joseph

• Support functions
 • Media prep
 • Bioreactor prep

• Sponsors
 • Jon Coffman
 • Venkat Raghavan
Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com