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ABSTRACT 
Industrial scale bubbling fluidized bed simulations were carried out within the Kinetic 
Theory of Granular Flows (KTGF). The KTGF was applied within two different 
modelling frameworks, the traditional Two Fluid Model (TFM) and a new approach in 
the form of the Dense Discrete Phase Model (DDPM), in order to identify any 
differences in performance. Only the DDPM was able to attain fully grid independent 
results for industrial scale 2D simulations. In fact, the performance was sufficiently 
good to enable the completion of reasonably affordable full 3D simulations. These 
simulations revealed some differences between 2D and 3D, but the global system 
behaviour remained relatively similar. Comparisons to experimental pressure drop 
data for both 2D and 3D simulations were acceptable.  
 
INTRODUCTION 
Grid independence behaviour of fluidized bed simulations depends primarily on the 
resolution of meso-scale particle structures in the computational domain. In bubbling 
beds these structures are realized as bubbles, while risers typically display the 
formation of particle clusters. Within industrial scale fluidized bed systems, the 
length scales on which these clusters occur generally requires a mesh size which is 
too small to be realistically simulated with present computational capacities.   
 
In order to address this challenge, substantial research effort has been invested into 
filtered or ‘coarse graining’ approaches (1-5). These methods aim to model the 
effects of particle structures so that they do not have to be directly resolved on a 
very fine grid. The filtered approach holds great promise for industrial application 
and has a solid fundamental basis, but after a decade of study is still said to be in its 
infancy when reviewed for the highly sensitive Geldart A particle class (6). In order 
to arrive at a complete predictive model for industrial reactors, these closures will 
have to be extended to poly-dispersed particle systems and additional closures will 
have to be formulated for reaction kinetics. It is therefore reasoned that it will be 
many years before a sufficiently generic and reliable set of sub-grid closures will be 
developed.  
 
The alternative to the filtered approach is fully resolving all the particle structures on 
a sufficiently fine computational grid. When using this approach, no modelling is 
needed in addition to the standard Kinetic Theory of Granular Flows (KTGF). Using 
the traditional Two Fluid Model (TFM), grid independent results cannot be attained 
for industrial reactors, but an alternative modelling formulation, known as the Dense 
Discrete Phase Model (DDPM), has been shown to display much improved grid 
independence behaviour (7). This modelling approach will now be evaluated in an 
industrial scale bubbling bed reactor without any sub-grid closures incorporated in 
order to assess the degree to which it can improve grid independence behaviour.     
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SIMULATIONS 
 
Model equations 
Simulations will be carried out both with the TFM and the DDPM in order to compare 
their grid independence behaviour. A summary of the TFM model equations for this 
approach can be found in Taghipour et al. (8). The most important closure relations 
employed was the modelling of the drag and solids viscosity according to Syamlal et 
al. (9), the frictional viscosity according to Schaeffer (10), the solids pressure 
according to Lun et al. (11) and the radial distribution function according to Ogawa 
et al. (12). The granular temperature equation was only solved in its algebraic form, 
thereby neglecting the contributions of convection and diffusion.  
 
Due to its novelty, a more complete description of the DDPM will be provided here. 
The DDPM is based on the standard Discrete Phase Modelling (DPM) approach 
where parcels of particles are tracked through the domain in a Lagrangian 
framework according to Newton’s laws of motion. In its standard form, the DPM 
does not account for the volume fraction of the discrete phase particles. The DDPM 
formulation (13) overcomes this limitation by solving a set of conservation equations 
for multiple phases (generalized form written below for phase p).  
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The conservation equations are not solved for the particulate phase, but the 
appropriate volume fraction or velocity values are taken directly from the particle 
field.  
 
The particle equation of motion is solved for each particle in the form: 
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The right hand side terms represent the pressure force, drag force, gravitational 
force, any additional force and the particle-particle interaction force. The drag force 
is calculated as in equation (4) with the drag coefficient modelled according to 
Syamlal et al. (9). 
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The interaction force is estimated from the solids pressure gradient according to 
equation (5). This is a simple but fast model for the major physical effect. It does not 
have the highest possible accuracy but favours efficiency, in particular when 
compared to DEM like approaches. A major limitation of this formulation is that the 
particle interaction force does not contain any viscous contribution. The resistance 
to strain caused by the modelled shear viscosity is therefore not included. In the 
dense fluidized bed system simulated here, this viscous force could be of significant 
importance and its negligence is expected to create a more free-flowing bed than 
might be expected. 
 
The granular temperature used in the KTGF is calculated in its algebraic form from 
the ordinary differential equation below: 
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Here, the right hand side terms represent the generation of fluctuating energy by the 
solids stress tensor, the collisional dissipation of fluctuating energy (11) and the 
energy exchange between the fluctuating particles and any additional phases (14). 
The solids stress tensor in equation (6) is written as follows: 
 

2
2

3p p p p p pp I S Iτ µ λ µ υ= − + + − ⋅∇ 
 
 

  (7) 

 
Here, the solids pressure and the bulk viscosity is calculated according to Lun et al. 
(11) and the shear viscosity according to Syamlal et al. (9). Within these 
formulations, the radial distribution function is calculated according to Ogawa et al. 
(12). 
 
Computational Domain 
Simulations will be compared to pressure drop data collected from an industrial 
fluidized bed reactor as reported by Gobin et al. (15). The cylindrical reactor was 5 
m in diameter and 30 m in height. It was found, however, that only 15 m of height 
needs to be included in the domain for the flow scenarios investigated in this study.  
 
Both 2D and 3D simulations were conducted. The 2D simulations were carried out 
on a planar domain, 5 m in width and 15 m in height, while the 3D simulations were 
carried out in a cylindrical domain, 5 m in diameter and 15 m in height. Both 
domains were meshed with constant sized square (2D) or cubic (3D) structured cells 
according to the simulation run in question.  
 
Material properties 
The particles used in the experiments were poly-disperse with a mean diameter of 
1.3 mm and a density of 850 kg/m3, characterizing them as Geldart D particles (16). 
The fluidization gas was pressurized hydrocarbons with a density of 20 kg/m3 and a 
dynamic viscosity of 1.5e-5 Pa.s (15).  
 
Boundary Conditions 
The bottom boundary of the domain was designated as a constant velocity inlet (0.5 
m/s) to simulate a perfect plate distributor as the gas inlet. The top boundary was 
designated as a pressure outlet. Side boundaries were designated as walls with a 
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specularity coefficient of 0.01 to describe a low friction wall in the framework of the 
Johnson and Jackson (17) boundary condition.  
 
Solver settings 
The commercial CFD package, FLUENT 12.1 was used as the flow solver in this 
study. The phase-coupled SIMPLE algorithm (18) was selected for pressure-velocity 
coupling. All remaining equations were discretized using the QUICK scheme (19). 
1st order implicit temporal discretization was used.  
 
Operation and data extraction 
Each simulation domain was initialized with a zero value for all flow variables. A 
region of solids at a volume fraction of 0.35 was subsequently patched into the 
bottom 8 m of the reactor as specified in Gobin et al. (15). For the DDPM, the 
particle parcels were injected in the first 0.1 s of the simulation from all of the 
internal surfaces of the mesh. This was done in such a way that the each cell in the 
lower 8 m of the reactor would, on average, contain 10 particle parcels.   
 
Following the patching and injection, the simulation was run until a quasi-steady 
state was reached. This was identified by a monitor on the solids velocity. Once the 
quasi-steady state was attained, the sampling of time statistics was activated in 
order to get time-averaged axial pressure profiles for each simulation. Time statistics 
were collected for a minimum of 30 s real time which was tested to be 
representative of the time-averaged system behaviour. 
 
RESULTS AND DISCUSSION 
As is often the case in industrial reactors, experimental values of pressure drop can 
only be estimated from the available data (15). Only two pressure measurements 
were available in the 5 m ID reactor, one at a height of 3.5 m and the other at a 
height of 6.5 m. The pressure drop between them was experimentally measured to 
be between 9 and 11 kPa. An average of 10 kPa will be taken. Some more detailed 
pressure drop measurements were made in a pilot scale unit scaled to one third of 
the industrial one. These measurements confirmed a virtually linear pressure drop 
profile along the height of the pilot scale reactor. Under the assumption that the 
pressure drop profile in the industrial scale reactor is linear as well, a linear pressure 
drop of 10000/(6.5-3.5)=3333 Pa/m can be deduced. The total pressure drop over 
the reactor can be estimated from the weight of the solids that has to be fluidized as 
23348 Pa. An estimated linear pressure profile can therefore be specified with a 
gradient of 3333 Pa/m and a y-intercept of 23348. Numerical simulations will be 
compared against this experimental estimation. 
 
The first set of simulations was carried out in 2D on grids spanning from 4 cm to 16 
cm. In the domain simulated, this translated to cell counts between 2930 and 46875. 
The simulation results attained with the TFM and the DDPM are given in Figure 1. 
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Figure 1: Pressure drop profiles for the 2D simulations with the TFM (left) and 
the DDPM (right) for various mesh sizes from 4 cm to 16 cm. 
 
It is clear that both modelling approaches provide adequate fits to the estimated 
experimental data. The important finding for this study, however, is that the DDPM 
seems to retain grid independent behaviour throughout with all the grids investigated 
while the TFM never reaches complete grid independence. Grid independent results 
for the DDPM with the 16 cm grid implies that reliable results in an industrial reactor 
can be attained within an industrial reactor with only 2930 cells in 2D. This 
simulation required about 1 hour of processing time on a single processor, which, in 
terms of CFD standards, is very fast.  
 
In comparison to the TFM, where grid independence might be attained on a 4 cm 
grid, the DDPM solved on a 16 cm grid would require 16 times less cells in 2D and 
can be run at a 4 times greater timestep. On a fixed grid, the DDPM is currently 
about 3 times slower than the TFM, but even with this taken into account, the DDPM 
can provide grid independent results more than 20 times faster than the TFM.  
 
The reason for the good grid independence behaviour displayed by the DDPM is 
similar to the conclusions drawn in Cloete et al. (7) – the Lagrangian particle 
tracking provides for a much more accurate representation of the volume fraction 
field. The volume fraction field tracked by the TFM on coarse grids is subject to 
substantial numerical diffusion and the large volume fraction gradients cannot be 
resolved accurately. Instantaneous plots of the volume fraction are displayed in 
Figure 2 as illustration of this point. 
 
Figure 2 shows very clear differences between the volume fraction fields resolved by 
the TFM and the DDPM. In the DDPM, there is a very clear separation between the 
bubble and emulsion phases on all the grids investigated, while the TFM does not 
resolve clear bubbles even on the finest grid investigated. When looking at the 
DDPM, it is clear that some of the flow detail is lost on the coarser grids, but Figure 
1 shows that the global system behaviour is preserved, at least from a 
hydrodynamic point of view. The degree to which this will be true for reaction kinetic 
simulations is a subject for future study.  
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Figure 2: Instantaneous volume fraction profiles for the TFM (top) and the 
DDPM (bottom). The mesh is coarsened from left to right from 4 cm to 16 cm.  
 

 
Figure 3: Pressure drop profiles for 3D 
simulations carried out with the DDPM 
for various mesh sizes from 4 cm to 16 
cm. 

 
Figure 4: Comparison between the 
solids volume fraction profiles 
returned by the DDPM for the 2D and 
3D cases with an 8 cm grid. 
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Following the good grid independence shown by the DDPM on coarse grids, some 
3D simulations were also completed for grids of 8 cm and larger. The pressure 
profiles in Figure 3 show that the 3D simulations also display very satisfactory grid 
independence behaviour. Comparison to experimental data also shows acceptable 
agreement, even though a possible under-prediction of bed expansion is observed. 
In comparison to 2D simulations, the 3D runs also seem closer to reality in that they 
display a more linear pressure drop trend.  
 
Figure 3 seems to indicate that 2D simulations can adequately predict global system 
behaviour in comparison to 3D at significantly reduced computational costs. When 
looking at the solids volume fraction profiles (Figure 4), however, significant 
differences between the 2D and 3D representations are observed. It is clear that the 
3D simulations display much smaller bubbles than their 2D counterparts, especially 
towards the upper regions of the bed. The large voidage at the top of the 2D bed 
would explain the reduction in the pressure gradient towards the surface.   
 
This pronounced difference between particle structure representation in 2D and 3D 
implies that 2D simulations of 3D industrial beds should be interpreted with caution. 
The similarity in pressure drop and bed height does suggest that the global system 
behaviour is preserved even in 2D, but the local transport phenomena in the bed 
seem to be significantly different. The system seems to be very forgiving towards 
these differences in terms of global hydrodynamic behaviour, but is likely to be less 
so when reaction kinetics are eventually incorporated. 
 
CONCLUSIONS 
Industrial scale bubbling fluidized bed simulations were carried out using the 
traditional Two Fluid Model (TFM) and a new approach known as the Dense 
Discrete Phase Model (DDPM). The DDPM showed substantially better grid 
independence behaviour than the TFM. 2D simulations showed that results could be 
attained at least 20 times faster with the DDPM than with the TFM.  
 
Grid independence results with the DDPM were so encouraging that even 
reasonably affordable 3D simulations could be completed. Comparisons to 
experimental pressure drop data also proved to be acceptable. It was shown that 
differences exist between the axial pressure profiles for 2D and 3D cases, but these 
differences are not as large as might be expected. The local volume fraction 
distribution through the respective domains did show substantial differences, 
however, with the 2D simulations showing the formation of much larger bubbles than 
their 3D counterparts. These differences seem to have only a minor influence on 
global parameters such as pressure drop and bed height, but should be further 
investigated in more detailed studies.  
 
ACKNOWLEGMENT 
The authors would like to acknowledge the financial support of the Research 
Council of Norway under the Flow@CLC grant. Futhermore, the authors 
acknowledge the use of the supercomputing facilities at the Norwegian University of 
Science and Technology.  
 
NOTATION 
Regular symbols Greek letters 
C  Coefficient α  Volume fraction 
d  Diameter (m) φ  Rate of energy exchange (W/m3) 
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F  Force (1/s) γ Θ  Energy dissipation rate (W/m3) 

F


 
Force vector per unit volume 
(N/m3) 

µ  Viscosity (Pa.s) 

g  Gravity vector (m/s2) Θ  Granular temperature (m2/s2) 
I  Identity tensor ρ  Density (kg/m3) 
K  Interphase exchange coefficient τ  Stress-strain tensor 
m  Mass transfer rate (kg/s/m3) υ



 Velocity vector (m/s) 
p  Pressure (Pa) ∇  Gradient (1/m) 
Re  Reynolds number Subscripts 
S  Source term (kg/m2s2) D  Drag 
t  Time (s) p  Phase p or Particle/Solids 
  q  Phase q 
  T  Transpose 
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