Biorefinery Process Economics

An in-depth, independent technical and economic evaluation by the PEP program

Gregory M. Bohlmann
gbohlmann@sriconsulting.com
March 9, 2006
Biorefinery Process Economics

Agenda

- Biorefinery Research
- Whole Corn Biorefinery
 - Core Conversion Technologies
 - Capital Costs
 - Process Economics
- Economic Issues
 - Feedstock
 - Coproducts
- Waste Issues
- Conclusions
Early Biorefineries

Corn Dry Mill
- Corn Grain
- Enzymes
 - Milling & Saccharification
 - Sugars
 - Anaerobic Fermentation
 - Distillation
 - Ethanol
 - DDGS

Raw Sugar Mill
- Sugarcane
 - Milling & Evaporation
 - Bagasse
- Water
 - Crystallization
 - Raw Sugar
- Molasses
 - Fermentation
 - Distillation
 - Ethanol
Feedstock Price as Driving Factor

Opportunity grows for renewable resources

- Crude Oil, $/ft³
- Natural gas, $/thous ft³
- Corn, $/bushel

[Graph showing the price trends for Crude Oil, Natural gas, and Corn from 1995 to 2005]
Biorefinery Research

Worldwide Interest

• **Brazil**
 - Leverage sugar mills

• **Europe**
 - Kyoto driven
 - BREW project funded by EC

• **United States**
 - Leverage corn milling and other agricultural assets
 - Projects funded by Dept. of Energy (DOE) and Dept. of Agriculture (USDA)
2003 DOE/USDA Funded Projects

- Integrated Corn Biorefinery (ICBR)
 - DuPont, Diversa, NREL, MSU
- Sugars from lignocellulosics
 - NatureWorks, Iowa State University
- Corn fiber separation and conversion
 - National Corn Growers, ADM, PNNL
- Starch and biomass conversion pilot plant
 - Abengoa, Novozymes, NREL
 - Large scale pilot facility in York, Nebraska
Whole corn biorefinery utilizes entire corn plant

<table>
<thead>
<tr>
<th>Grain</th>
<th>% Dry Basis</th>
<th>Stover</th>
<th>% Dry Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>72.0</td>
<td>Cellulose</td>
<td>37.3</td>
</tr>
<tr>
<td>Celluloses</td>
<td>10.5</td>
<td>Xylan</td>
<td>20.6</td>
</tr>
<tr>
<td>Protein</td>
<td>9.5</td>
<td>Lignin</td>
<td>17.5</td>
</tr>
<tr>
<td>Oil</td>
<td>4.5</td>
<td>Galac./Man.</td>
<td>1.4</td>
</tr>
<tr>
<td>Sugars</td>
<td>2.0</td>
<td>Arabinan</td>
<td>2.1</td>
</tr>
<tr>
<td>Ash</td>
<td>1.5</td>
<td>Ash</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acetate</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extractives</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Core Conversion Technologies

- Sugar platform technologies
 - Pretreatment
 - Saccharification
- Fermentation technologies
 - Engineered microorganisms e.g. *S. cerevisiae, Z. mobilis* and *E. coli*
- Milling technologies
 - Starch conversion to sugar
Whole Corn Biorefinery

Whole Corn

Stover

Kernels

Gypsum
Water
Enzyme
Pretreatment

Sacch. & CoFerm
Distillation
Ethanol
Lignin

Dry Mill & Sacch.
Fermentation
1,3-Propanediol

Recovery & Purification

DDGS Recovery
DDGS

Enzymes
Air
Capital Costs

Base Case:
580 mill. Lb/yr PDO
65 mill. Gal/yr EtOH

Source: PEP Report 257
Whole Corn Biorefinery
Battery Limits Investment

- Recovery & Purification: 27%
- Pretreatment & Conditioning: 26%
- Saccharification & Co-Fermentation: 17%
- Distillation & Dehydration: 14%
- DDGS Recovery: 11%
- Dry Mill & Saccharification: 3%
- Aerobic Fermentation: 2%
Biorefinery Off-Sites Capital

- General Facilities: 39%
- Other Utilities: 15%
- Steam: 7%
- Cooling: 6%
- Lignin Combustor: 26%
- Other Waste Treatment: 33%
- Other Waste Treatment: 7%
Dedicated Plant using glucose feedstock at 9 cents/lb

Biorefinery

EtOH $1.08/gal
DDGS $115/ton

PDO Capacity, million lb/yr

Net Production Cost, cents/lb PDO

Source: PEP Report 257
Process Economic Issues

- Feedstock
 - Cost and composition
- Coproducts
 - Recovery costs
 - Market value
- Enzymes
 - Make versus buy
- Waste Treatment
 - Aqueous
 - Solid
Feedstock flow chart for biomass planning tool I-FARM as planned in Task 8 of the USDA-DOE project.

Source:
Department of Agricultural and Biosystems Engineering
Iowa State University.
Biomass Cost Reduction Target

Goal of $30-35/t by 2015

<table>
<thead>
<tr>
<th>Year</th>
<th>FY03 Cost per Dry Ton</th>
<th>Selective Harvest</th>
<th>Single-Pass Harvester</th>
<th>Transportation & Bulk</th>
<th>Storage & Pretreatment</th>
<th>Nth Plan Savings (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>53.29</td>
<td>47.96</td>
<td>38.21</td>
<td>33.07</td>
<td>31.57</td>
<td>30</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Sokhansanj and Turhollow, ORNL 2005
Coproducts

• 1,3-Propanediol
 ■ Monomer for PTT
• Ethanol
 ■ Established commodity as fuel
• Lignin
 ■ Energy value
 ■ Potential chemical derivatives
• Protein
 ■ Established feed markets
• Carbon Dioxide
• Other Byproducts
 ■ Acetic acid, furfural, other organics
Lignin (Partial Structure)

Phenylpropane monomers:
More potential value than simple combustion

R = CHO or CH₂OH
R = CH or OC
Aqueous Waste

- Fermentation requires large volumes of water
 - *E. coli* produces 135 g/L PDO
 - Water recycle challenging
- Numerous fermentation by-products
 - Feedstock composition variability
 - Organism pathways
 - Acetic acid and other organics
 - High biological oxygen demand
 - Salts
Gypsum

- Potential sources
 - Pretreatment
 - Product recovery

- Disposal options limited
 - Land farming
 - Landfilling
Conclusions

What can we learn from this analysis?

• Biorefineries are capital intensive
 ▪ Pretreatment
 ▪ Product recovery
• Coproducts provide economic synergies
• Technical challenges remain for waste issues
 ▪ Lignin
 ▪ Waste water
 ▪ Gypsum
Thank you for your attention

Gregory Bohlmann
SRI Consulting
gbohlmann@sriconsulting.com
www.sriconsulting.com