The University of Western Ontario

Department of Chemical and Chemical engineering

Institute for Chemicals and Fuels from Alternative Resources

(ICFAR), London, Ontario, Canada

Effects of Temperature and Residence Time on the Thermal Cracking of Bio-oil for Syngas Production

Mohammad Latifi, Lorenzo Ferrante, Cedric Briens, Franco Berruti, Desmond Radlein

Introduction

Syngas:

- Mix of H₂ and CO
- Can be used to synthesize chemicals and clean fuels
- Now produced from fossil fuels such as natural gas

Producing syngas from biomass:

- Renewable resource
- No net greenhouse gas emissions

Introduction

Direct conversion of biomass to syngas:

- Simple
- Transportation of biomass is expensive

Two stage process:

- 1) Local plants convert biomass to bio-oil
- 2) Central plant converts bio-oil to syngas
- Transportation is much easier
- Valuable chemicals extracted from bio-oil

Research Objectives

➤ Convert to syngas a bio-oil produced by Dynamotive from sawdust

➤ Thermal cracking of bio-oil in a hot fluidized bed of attrition-resistant silica sand

Gasification Reactions

☐ Thermal cracking

$$C_n H_m O_K \leftrightarrow C_x H_y O_z + gases(H_2, H_2 O, CO, CO_2, CH_4, ...) + coke$$

☐ Steam reforming reaction

$$C_n H_m O_k + (n-k) H_2 O \leftrightarrow nCO + \left[\left(n + \frac{m}{2} - k \right) \right] H_2$$

■ Water gas shift reaction

$$CO + H_2O \leftrightarrow CO_2 + H_2$$

☐ Methane formation

$$CO + 3H_2 \leftrightarrow CH_4 + H_2O$$

$$CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$$

Pilot Plant for Bio-oil Gasification

Experimental conditions

- > Atomization and fluidization gas: Nitrogen
- > Source of steam: Water in bio-oil
- > Temperature: 500 °C 700 °C
- > Pressure: atmospheric
- \triangleright Two silica sands: $d_{psm} = 80 \mu m$ and 200 μm
- Mass of bed: 1.5 kg and 3.0 kg
- > Residence time varied by changing the reactor volume

Experimental results- Effect of Residence Time

Yield of Syngas (H_2 +CO) for 1.5 kg sand (d_{psm} =200 μ m)

Experimental results- Effect of Residence Time

Yield of molar ratio of H_2/CO for 1.5 kg sand $(d_{psm}=200 \mu m)$

Experimental results- Effect of Temperature

Yield of Total gas (H_2 , CO, CO_2 and CH_4) for 1.5 kg sand (d_{psm} = 200 μ m)

Experimental results- Effect of Temperature

Yield of H_2 for 1.5 kg sand (d_{psm} = 200 μ m)

Experimental results- Effect of Temperature

Yield of CO for 1.5 kg sand (d_{psm}= 200 μm)

Experimental results- Effect of Particle Size

Yield of Total gas (H_2 , CO, CO_2 and CH_4) for 1.5 kg and 3.0 kg sand beds (d_{psm} =80 μm and 200 μm)

Experimental results - Syngas (H2+CO) Production

Yield of syngas for 1.5 kg (open symbols) and 3.0 kg (closed symbols) sand (d_{psm} = 200 μ m)

i**o**cfar

Experimental results- H₂/CO

H₂/CO molar ratio i Cfar for 1.5 kg (open symbols) and 3.0 kg (closed) sand (d_{psm}=200μm)

Conclusions

- ☐ Similar results obtained with two particle sizes:
 - **⇒** sand has no catalytic effect
 - no significant heat or mass transfer limitations
- ☐ Coke formation:
 - reduction with time of the gasification yield
- ☐ Longer residence times and higher temperatures
 - better syngas yield and quality

