Engineering Conferences International

[ECI Digital Archives](https://dc.engconfintl.org/)

[Ultra-High Temperature Ceramics: Materials For](https://dc.engconfintl.org/uhtc_v)
Extreme Environment Applications V

6-8-2022

Ultra-high temperature ceramics with exceptional strength at elevated temperature

Laura Silvestroni

Nicola Gilli

Diletta Sciti

Jeremy Watts

William Fahrenholtz

Follow this and additional works at: [https://dc.engconfintl.org/uhtc_v](https://dc.engconfintl.org/uhtc_v?utm_source=dc.engconfintl.org%2Fuhtc_v%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages)

ULTRA-HIGH TEMPERATURE CERAMICS WITH EXCEPTIONAL STRENGTH AT ELEVATED TEMPERATURE

Laura Silvestroni¹, Nicola Gilli¹, Diletta Sciti¹, Jeremy Watts², Greg Hilmas², William Fahrenholtz²

*¹CNR-ISTEC, Institute of Science and Technology for Ceramics, Via Granarolo 64, I-48018 Faenza, Italy 2*Dep. of Materials Science & Eng., Missouri University of Science and Technology, MO 65409 Rolla, USA

Institute of **S**cience and **TE**chnology for **C**eramics Via Granarolo 64, I-48018 Faenza, Italy www.istec.cnr.it

C isted

Goal & Approach 1. Understanding basic phenomena

Multi-scale microstructure arrangement in ZrB_2 ceramics

Materials:

 ZrB_2 : refractoriness & ablation resistance SiC or Silicide: formation of $SiO₂$ TM-compound: densification, refractoriness, oxidation & shell formation

- CORE-SHELL formation by addition of transition metal (TM)
- How to SUPER-SATURATE the shell to precipitate nano-inclusions within μ msized grain

2. Custom-making nano UHTC composites

• PHASE STABILITY DIAGRAMS define the partial pressure conditions within the sintering chamber that drive precipitation of nano-inclusions of variable nature.

> W: Low Solubility within ZrB_2 (~4 at%) **Ta:** High Solubility within ZrB₂ (~15 at%)

- Increased dislocations activity
- PDW at & across the core/shell boundary: grains refinement $2 \mu m \rightarrow 50 \ nm$

ZSW upon σ 1800, Ar: matrix

G Istec

ZSW upon σ 1800, Ar: core - shell

5 nm

G Istec

ZSW upon σ 1800, Ar: grain boundaries

- •Clean boride/boride interface
- •Clean boride/SiC interface

G istec

ZSW upon σ 1800, Ar: second phases

ZSW upon σ 1800, Ar: second phases

• Wetted SiC/SiC interfaces \rightarrow softening

Strengthening at UHT $σ = K_{1c}/Y$ *να*

$$
\bigwedge \text{Refractory phases} \text{--- } \text{ZrB}_2
$$

MGS preserved ---- grain refinement: dislocation movement and intersection, Petch-Hall hardening

• Clean grain boundaries --- WC

• Formation of a healing glassy layer --- test in Ar

Reinforcing phases --- precipitation hardening & metal toughening (W is ductile and tough at HT)

100 nm

Local toughening at UHT

SiC, WB platelets pull-out

bridging

 $σ = K_{1c}/Y₁$

W precipitation from the $(Zr, W)B₂$ solid solution

W is ductile and tough at HT and absorbs fracture energy

M.g.s. is retained, but the shell region is enlarged

Toughnening at nano-scale by twins and stacking faults

ZrB₂ - TaSi₂

- Formation of $(Zr,Ta)B_2$ shell (~40 vol%)
- Residual TaSi₂ and SiOC

- Expansion of the shell (-60 vol)
- SiOC conversion to SiC

ZBT-ann

- (Zr,Ta)C second phase
- Smooth fracture in the core
- Zig-Zag fracture & nano-sized bright ppt in the shell

ECI: UHTCs V, June 8 2022

shell

G istec

ZBT-ann: boride matrix

- Epitaxy between core and shell
- Intricate core-shell dislocation network
- Sharp core/shell interface, no clear definition between shell 1&2
- Dark inclusion at the core/shell interface

ZBT-ann: interfaces

G Istec

ZBT-ann: finally precipitates!

• Needles at core/shell interface

G Istec

ZBT-ann: TaC needles

Nature of the precipitates

Type of inclusion VS benefit:

- Metal: + local toughness
- Carbide: + hardness & strength

- ZBW \rightarrow (Zr,W)B₂ + rounded metallic W nano-precipitates
- ZBT \rightarrow (Zr,Ta)B₂ + elongated needle-like shaped TaC precipitates

- Nature of the ppt dictated by HP $CO/O₂$ partial pressure
- By changing the sintering atmosphere (CO-rich or vacuum) we might tune the nature of the ppt

- Metal: Mo, Re, Os, Ir
- Carbide: Ti, Hf, Nb, Cr, V

TM-C-O phase stability diagrams

Shape & location of the precipitate

- Interface properties of solid solution and ppt
- Wettability between solid solution and ppt
- Plasticity of the novel formed phase
- Cooling rate?

C isted

Sphere: isotropic energy, low wettability

Needle: anisotropic energy, growth rate controlled by mobility

- Local TM enrichment /supersaturation
- Low energy sites with enhanced mobility for atomic attachment and precipitate growth (dislocations at the core-shell interface)

Amount of ppt

• Solubility of the guest TM in the boride cell

- \triangleright High solubility: Ta up to 15 at% \rightarrow high amount of TM-additive to super-saturate the boride solid solution
- \triangleright Low solubility: W up to 4 at% \rightarrow low amount of TM-additive to super-saturate the boride solid solution

• Shell thickness

- \triangleright can be manipulated by changing the **T & t** of the heat treatment
- \triangleright Is formation of a homogeneous solid solution desirable? elimination of one hierarchy grade \rightarrow Dislocations at the core-shell interface useful for:
- grain refinement down to 30-50 nm
- increased plasticity $@UHT$
- How to quantify the ppt?
	- \triangleright Ppt are difficult to image in TEM specimens
	- \triangleright can only be observed on fracture surfaces by SEM
	- \triangleright FIB slice and view ongoing

 $(Zr, TM)B₂$

UHT strength

- Nanotexturing coarsening
- Dislocation structure relieve?

ZBW-ann

UHT strength vs ductility

- Ductility of WB phase
- Approach to eutectic temperatures in the Zr–W–B–C system

Conclusions

- ZrB₂ ceramics hot pressed in presence of TM
- \bullet Core: ZrB₂
- $\mathbf{\hat{\cdot}}$ Shell: (Zr,TM)B₂
- shell featured by precipitation of nano-inclusions

• Nano-inclusions

- ◆ Nature depends on the PCO/PO₂
- ◆ Shape depends on interface properties, wettability, ductility

 $ZBT \rightarrow \text{TaC}$

 $ZBW \rightarrow W$

- **❖** Location: on defects
- **❖** Amount depends on TM **solubility** within the shell
- Strength >1 GPa @ 1800°C and >600 MPa @2100°C:
- ❖ Grain refinement by dislocation intersection
- ❖ Local toughening by ductile inclusions

Material design through thermal treatment leads to core/shell structures with a multi-scale nanostructured hierarchical arrangement: is this the X FACTOR for UHT strength in boride-based ceramics?

Acknowledgements

EU-FP7

Super LIGHT-weight Thermal Protection System for space application (LIGHT TPS #607182)

NATO SPS

SUper Strong ceramics for Protection in harsh ENvironments and defenCE (SUSPENCE #G5767)

US AFOSR

NAnocomposite Core-Rim structures for Enhanced tOUghness and Strength at extreme temperatures (NACREOUS #FA9550-21-1-0399)

US ARMY ACC-APC-RTP & ONR

FunctiOnally graded fiber-Reinforced Ceramics for Extreme environments (FORCE #W911NF-19-2-0253)

Thank you!

ECI: UHTCs V, June 8 2022 laura.silvestroni@istec.cnr.it

Literature

Effect of hypersonic flow chemical composition on the oxidation behavior of a super-strong UHTC

Laura Silvestroni^{a,}", Stefano Mungiguerra^b, Diletta Sciti^a, Giuseppe D. Di Martino^b, Raffaele Savino

Check for Design of ultra-high temperature ceramic nano-composites from multi-scale length microstructure approach

Nicola Gilli^{a,b}, Jeremy Watts^c, William G. Fahrenholtz^c, Diletta Sciti^a, Laura Silvestroni^{a,}

Journal of the European Ceramic Society 38 (2018) 2467-2476

Contents lists available at ScienceDirect

Journal of the European Ceramic Society journal homepage: www.elsevier.com/locate/jeurceramsoc

Original Article

Method to improve the oxidation resistance of ZrB₂-based ceramics for reusable space systems

Laura Silvestroni^{a,*}, Simone Failla^a, Irina Neshpor^b, Oleg Grigoriev^b

Literature

- 1. <https://www.nature.com/articles/srep40730>
- 2. <https://www.sciencedirect.com/science/article/pii/S1359836821007174?via%3Dihub>
- 3. <https://www.sciencedirect.com/science/article/pii/S0955221918300402?via%3Dihub>
- 4. <https://ceramics.onlinelibrary.wiley.com/doi/full/10.1111/jace.14738>
- 5. <https://www.sciencedirect.com/science/article/abs/pii/S0955221917300353?via%3Dihub>
- 6. <https://www.sciencedirect.com/science/article/abs/pii/S1359645418302404?via%3Dihub>
- 7. <https://www.sciencedirect.com/science/article/abs/pii/S0010938X19306109?via%3Dihub>
- 8. <https://linkinghub.elsevier.com/retrieve/pii/S135964621830575X>
- 9. <https://www.sciencedirect.com/science/article/abs/pii/S1359836819348917?via%3Dihub>