Biochar based silicon composites for sensors applications

Mauro Giorcelli
Politecnico di Torino – DISAT, Italy, mauro.giorcelli@polito.it

Mattia Bartoli
DISAT, Politecnico di Torino, Italy

Alberto Tagliaferro
DISAT, Politecnico di Torino, Italy

Carlo Rosso
DISAT, Politecnico di Torino, Italy

Follow this and additional works at: https://dc.engconfintl.org/biochar_ii

Recommended Citation

BIOCHAR BASED SILICON COMPOSITES FOR SENSORS APPLICATIONS

Mauro Giorcelli, DISAT, Politecnico di Torino
mauro.giorcelli@polito.it

Mattia Bartoli, DISAT, Politecnico di Torino
Carlo Rosso, DIMEAS, Politecnico di Torino
Alberto Tagliaferro DISAT, Politecnico di Torino
Alessandro Sanginario, DET, Politecnico di Torino
Presentation outline

• Biochar in Composites
• Biochar Electrical conductivity
• Biochar in Silicon matrix
• Biochar as possible carbon filler in composite
• Conclusions
Biochar in Composite

Goal: use biochar to increase:
- Mechanical properties
- Electrical properties
- (Thermal properties)

In composites based on:
- Polymers
- Cement
- ...

Why biochar?
- High carbon content
- Porous
- Stable (low reactivity)
- Low cost/recycling material
- Quite easy to disperse
Biochar in Composite

Promotion of: \(\rightarrow \) mechanical adhesion of polymer chains
\(\rightarrow \) electrical transport of electrons

Polymer: Epoxy resin

Biomasses:
- a) Wheat straw WSP
- b) Oil Seed Rape OSR
- c) Rice Husk RH
- d) Mixed softwoods SWP
- e) Miscanthus Straw MSP

: biochar particles
: polymer chain

Article

Influence of Commercial Biochar Fillers on Britteness/Ductility of Epoxy Resin Composites

Mattia Bartoli \(^{1,4,5}\), Mauro Gnocchi \(^{1,4}\), Carlo Rosso \(^{5}\), Massimo Rovere \(^{1}\), Pravin Jagdale \(^{4}\) and Alberto Tagliabue \(^{1,4}\)

MDPI
Biochar Electrical Conductivity

Evaluation of biochar electrical conductivity before composite preparation

Biochar Electrical Conductivity

Evaluation of biochar electrical conductivity in composite

Ohm law for conductivity (σ): $\sigma = \left(\frac{l}{RS}\right)$

Polymer: Epoxy resin
Biomasses: Coffee

Presented at: Frontiers in polymer science
Biochar in Silicon Matrix

Evaluation of biochar electrical conductivity in composite

What we have to take in account to increase the electrical conductivity in composites:

- **Particle size** (low dimensions \rightarrow best dispersions \rightarrow increase the electrical conductivity)

- **Biochar graphitization grade** (it increases with temperature treatments ($>400^\circ\text{C} \rightarrow$ Raman)

- **Biochar porosity** in function of its ability to be grinded in small particles
 (CO2 activation could help, preliminary tests)

- **Low ash content**
Biochar in Silicon Matrix

Goal: sensor application

Suggested polymer: soft polymer → Silicon

Behaviour like solid in a liquid, to study well...
Biochar in Silicon Matrix
Biochar in Silicon Matrix

Realization of pressure sensor device based on biochar

Polymer: Silicon
Biochar: Olive 1500
Conclusions

• Biochar represents a great opportunity in composite field

• Indisputable advantages: → low cost
 → green/ recycling material

 ... And it works!
Thanks to:

Mattia Bartoli, Post. Doc
Massimo Rovere, Raman specialist
Pravin Jagadale, Researcher
Prof. Carlo Rosso, Mechanical
Alessandro Sanginario, Researcher

Prof. Alberto Tagliaferro, Head

mauro.giorcelli@polito.it