Hydrothermal conversion of micro-algae as new biomaterials for pavement

Clemence Queffelec
Ceisam laboratory, University of Nantes, France

Emmanuel Chailleux
IIFSITAR, Centre de Nantes, Département MAST, Laboratoire Matériaux pour les Infrastructures de Transports, France

Ilef Borghol
IIFSITAR, Centre de Nantes, Département MAST, Laboratoire Matériaux pour les Infrastructures de Transports, France

Bruno Bujoli
CEISAM, Université de Nantes, CNRS, UMR 6230, 2, rue de la Houssinière, France

Dorothée Laurenti
IRCELYON, CNRS-UCBL, UMR 5256, 2 avenue A. Einstein 69626 Villeurbanne, France

See next page for additional authors

Follow this and additional works at: https://dc.engconfintl.org/pyroliq_2019

Part of the Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Clemence Queffelec, Emmanuel Chailleux, Ilef Borghol, Bruno Bujoli, Dorothée Laurenti, Christophe Geantet, Nolven Guilhaume, and Christophe Lombard

This abstract and presentation is available at ECI Digital Archives: https://dc.engconfintl.org/pyroliq_2019/13
HYDROTHERMAL CONVERSION OF MICRO-ALGAE AS NEW BIOMATERIALS FOR PAVEMENT

Clémence Queffélec, Emmanuel Chailleux

Ilef Borghol, Bruno Bujoli, Dorothée Laurenti, Nolven Guilhaume, Christophe Geantet and Christophe Lombard
Problematic : how to find substitutes to petroleum-based products?

- Bitumen : heavy fraction from petroleum refinery
- World bitumen annual production estimated : 122,5 MT / year in 2019
 - Pavement construction (90%)
 - Roofing
- Production depends on oil companies economical strategies (cracking of heavy fraction) and regulation (reduction of sulfur content in marine fuel)

→ Necessity to anticipate alternatives to petroleum bitumen
Alternatives: why not microalgae (Biomass of the future?)

- Rapid growth
- Biodiversity >200000
- Lipid rich: up to 50%
- High photosynthetic yield
- No competition with other crops

Use of microalgae residues after a first high value valorisation

Microalgae residues are provided by Algosource Technologies

- growing in open raceway
- water soluble molecules were extracted for another valorization
Objectives
Scientific challenges

How to get a material with the following properties?

- Hot melt
- Sticky
- Viscoelastic
- Hydrophobic
Hydrothermal liquefaction (HTL)

- Wet biomass
- Water in subcritical state: $T < 374 \, ^\circ C$
- Under pressure \rightarrow liquid water
- Ion product of water increase
 \rightarrow Chemical reactions are facilitated
- Dielectric constant of water decrease
 \rightarrow Water becomes a solvent for organic compounds

Chem. Eng. J. 2011, 172, 1
Characterization of the initial biomass

Two residues studied: Scenedesmus and Spirulina sp.

Scenedesmus sp. residues

<table>
<thead>
<tr>
<th>Component</th>
<th>Scenedesmus sp.</th>
<th>Spirulina sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipids</td>
<td>28%</td>
<td>35%</td>
</tr>
<tr>
<td>Proteins</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>30%</td>
<td>17%</td>
</tr>
<tr>
<td>Others</td>
<td>20%</td>
<td>21%</td>
</tr>
</tbody>
</table>

Lipids: only free fatty acids according to 1H NMR
Hydrophobic fraction from HTL

Batch reactor

Aqueous fraction

Gaz (CO₂)

Hydrophobic fraction = biobinder

HTL parameters:
Temperature: 260 °C, 280 °C and 300 °C
Reaction time: 1 H

Solid

Oil
Microalgae residues

<table>
<thead>
<tr>
<th>Microalgae residues</th>
<th>Hydrophobic fraction (%)</th>
<th>Aqueous fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenedesmus sp.</td>
<td>50 ±0,5</td>
<td>21 ±1,5</td>
</tr>
<tr>
<td>Spirulina sp.</td>
<td>48 ±1</td>
<td>32 ±0</td>
</tr>
</tbody>
</table>

260°C optimal condition for rheology

- **oil**: GCxGC MS, 1H NMR, FTIR, EA etc
- **solid**: GCxGC MS, 1H NMR, FTIR, EA etc
Chemical characterization of the oil

GPC Chromatogram of oily phases
from *Spirulina*
from *Scenedesmus* sp.

- *ACS Sust. Chem. Eng.* 2015, 3, 583-590
Chemical characterization of the solid

From Scenedesmus sp.

FT-IR

\[13\text{C CP-MAS NMR}\]
Chemical characterization of the solid

FT-IR and 13C MAS NMR: high molecular weight aliphatic polymer « Algaenans »

ACS Sust. Chem. Eng. 2015, 3, 583-590

Chemical characterization of the solid

- Oxidative cleavage by RuO$_4$
- Analysis of the oxidized products by GC-MS after esterification

Esters of fatty acids
Diesters of fatty acids
Structure of the biobinder

Colloidal model of petroleum bitumen proposed by Nellensteyn

Asphaltenes = solid particles

Maltenes = liquid matrix

Rheologically Structured oil

= Oily matrix
+ Solid residue
Rheological characterization

Dynamic shear rheometer

$|G^*|$: ratio between sinusoid amplitudes \rightarrow stiffness of the material

ϕ: phase lag between sinusoids \rightarrow ability of the material to relax stress
From microalgae residues to bio-binder: characterization (rheology)

Standard bitumen (35/50): A viscoelastic behavior: elastic solid at low temperatures and a viscous Newtonian liquid at high temperatures.

- **High temperatures, low frequency domain:**
- **Low temperatures, high frequency domain:**
From microalgae residues to bio-binder: characterization (rheology)

Standard bitumen (35/50): A viscoelastic behavior: elastic solid at low temperatures and a viscous Newtonian liquid at high temperatures

Scenedesmus sp. bio-binder: A viscoelastic behavior similar to a standard petroleum bitumen (35/50)
From microalgae residues to bio-binder: characterization (rheology)

Standard bitumen (35/50): A viscoelastic behavior: elastic solid at low temperatures and a viscous Newtonian liquid at high temperatures

Scenedesmus sp. bio-binder: A viscoelastic behavior similar to a standard petroleum bitumen (35/50)

Spirulina sp. bio-binder: Rheological behavior similar to elastomer used as additives in petroleum bitumen
Conclusions and outlooks

- The rheology behavior of the water insoluble fractions from both micro-algae is compatible with pavement application: low viscosity at high temperature to coat aggregates, high stiffness at room temperature to ensure aggregate cohesion.
- Consistency of biomaterials can be optimized by adjusting HTL processing parameter.
- Difficulty to identify high mass molecules or molecular structures \(\rightarrow \) analysis by FTICR.

- Need to understand more deeply reactions during HTL.
- Morphology of the solid residues?
- Use of catalysts to tune the physical properties of the biobinder.
- Industrial potential evaluation \(\rightarrow \) production using a continuous process pilot.
Towards continuous hydrothermal liquefaction (HTL)

- 1 to 2 L/h maximum
- Up to 350 °C
Acknowledgments

Fundings
Thank you for your attention