Solid particle erosion of environmental barrier coatings and ceramic matrix composites

Michael Presby
NASA Glenn Research Center, USA, michael.presby@nasa.gov

Bryan J. Harder
NASA Glenn Research Center, USA

Kang N. Lee
NASA Glenn Research Center, USA

Follow this and additional works at: https://dc.engconfintl.org/cmcii

Recommended Citation

Michael Presby, Bryan J. Harder, Kang N. Lee, and Kang N. Lee, "Solid particle erosion of environmental barrier coatings and ceramic matrix composites" in "Ceramic Matrix Composites II: Science and Technology of Materials, Design, Applications, Performance and Integration", Ram Darolia, GE Aviation, USA; Jon Binner, University of Birmingham, United Kingdom; Yutaka Kagawa, Tokyo University of Technology, Japan; Dietmar Koch, University of Augsburg, Germany; Rishi Raj, University of Colorado, USA; Gerard Vignoles, University of Bordeaux, France; Ken Goto, Japan Aerospace exploration agency (JAXA), Japan; Satoshi Kitaoka, Japan Fine Ceramics, (JFCC), Japan Eds, ECI Symposium Series, (2022).
https://dc.engconfintl.org/cmcii/17

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ceramic Matrix Composites II: Science and Technology of Materials, Design, Applications, Performance and Integration by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Solid Particle Erosion of Environmental Barrier Coatings and Ceramic Matrix Composites

Michael J. Presby
Bryan J. Harder, Kang N. Lee, and Jamesa L. Stokes
NASA Glenn Research Center, Cleveland, OH, USA

Ceramic Matrix Composites II: Science and Technology of Materials, Design, Applications, Performance and Integration
November 13 – 18, 2022
Santa Fe, NM

Work performed under NASA's Transformative Aeronautics Concepts Program, Transformational Tools and Technologies Project
Outline

• Solid Particle Erosion (SPE) in Aero-Engines
• SPE Testing / Facility
• SPE in a Melt-Infiltrated SiC/SiC Ceramic Matrix Composite (CMC)
• SPE in a Plasma Spray – Physical Vapor Deposition (PS-PVD) Environmental Barrier Coating (EBC)
• Combined Mechanisms (CMAS + SPE)
• Roadmap for Modeling Efforts
• Conclusions
Solid Particle Erosion in Aero-Engines

- Engine hardware in both commercial and military aircraft can be subjected to surface damage and subsequent material loss due to the repeated impact of small, hard particulates.

- This mode of damage, termed solid particle erosion, can lead to deleterious effects of engine hardware which can reduce overall engine performance and shorten service lifetimes.

- As a result, it is important to characterize and understand the erosion behavior of gas-turbine grade materials.

Erosion damage in hot-section hardware:
Material removal of thermal barrier coating (TBC) and superalloy substrate

Presby et. al. (2020) J. Eng. Gas Turbine Power
Erosion Factors for Gas-Turbine Materials

Operating conditions: combustion environment, temperature, pressure, etc.

Erodent: material (properties), size, shape, etc.

Impact condition: velocity, angle, particle flux, etc.

Coating: EBC, T/EBC, material (properties), microstructure, thickness, etc.

Target/component: geometry, architecture, material (properties), etc.
NASA Glenn Erosion Burner Rig Test Facility

- Modified NASA Glenn Mach 0.3 burner rig with particle injection.
- \(T_{\text{surface}} \sim 300^\circ \text{C} \) to 1400°C
- Particle size: 27-µm to 560-µm – typically Al\(_2\)O\(_3\).
- Impingement angle: 10° to 90°.
- Gas Velocity: Mach 0.3 to Mach 1.0.
 - Particle size/type determines maximum particle velocity.
- Pyrometers and IR cameras.
- Rig optimization through coupled experimental and computational fluid dynamics modeling*.

*Kuczmarski, et. al. (2011) CFD-Guided Development of Test Rigs for Studying Erosion and Large-Particle Damage of TBCs. Modelling and Simulation in Engineering.
Solid Particle Erosion in a Melt-Infiltrated SiC/SiC Ceramic Matrix Composite

Experimental Procedure

Target Material Systems

- Melt-Infiltrated SiC\textsubscript{i}/SiC\textsubscript{m} Ceramic Matrix Composite
 - Hi-NicalonTM Type S (HNS) fibers
 - Boron nitride (BN) interphase
 - 8 plies
 - 0/90\degree, 2D-woven fiber layup
 - 25.4-mm (1.0-in) diameter by 2.1-mm thick
 - Density = 2.58 ± 0.06 g/cm3

- Monolithic SiC
 - α-SiC (Hexoloy® SA)
 - 25.4-mm (1.0-in) diameter by 3.0-mm thick
 - Density = 3.10 ± 0.02 g/cm3

Test Parameters

- 1200\degree C (2192\degree F) surface temperature
- 150-μm Al\textsubscript{2}O\textsubscript{3} erodent
- 2-g/min feed rate
- Particle velocities: 100, 150, and 200-m/s
- Impingement angle: 30, 45, 60, 75, and 90\degree

\[v = \frac{\omega L}{\theta} \]

Double disk velocimeter
Results: Cumulative Exposure Curves

- For both materials, a well-defined linear region (steady-state) is observed after an initial, non-linear transient region. Note – linear regression analysis was performed on the last 6 data points of each curve.

- Initial transient region:
 - MI SiC/SiC – high slope
 - α-SiC – low slope (incubation period)

- Greater period required for the build-up of surface / sub-surface damage responsible for material removal in the α-SiC compared to the MI SiC/SiC CMC.
Results: Steady-State Erosion Rate

- The MI SiC/SiC CMC and α-SiC follow a power law functional dependence with respect to particle velocity:
 \[E = \Phi v^n \]
 (1)
 \[\Phi = f(H, K_c, E_m, D_p, \rho_p, ...) \]

- Theoretical erosion models based on lateral crack dominated material removal predict:
 - \(n = 2.44 \) – Quasi-static model\(^1\)
 - \(n = 2.33 \) – Modified quasi-static model\(^2\)
 - \(n = 3.17 \) – Dynamic model\(^3\)

\(^1\)Wiederhorn et. al. (1979) J. Am. Ceram. Soc.

- The MI SiC/SiC CMC and α-SiC exhibit velocity dependence close to that predicted by the quasi-static erosion models.
- Additional work is warranted to understand the effect of other properties (i.e., the constant \(\Phi \)).
- CMC will exhibit local variations in properties due to complex microstructure / architecture (i.e., ‘fiber-rich’, ‘matrix-rich’, interfacial regions).

Results: Effect of impingement angle

- Assuming that material removal at all impingement angles is through brittle fracture, then the normal (indenting) component of the particle velocity will control the erosion response:
 \[E \propto (v \sin \alpha)^n \]

- As \(\alpha \) decreases below 60°, the erosion rate becomes increasingly underpredicted suggesting a contribution from the tangential, \(v \cos(\alpha) \), component of velocity.
Results: ‘Isolated’ impact events – MI SiC/SiC CMC

- Some CMC samples were subjected to low levels of erodent (~0.1-g) to better elucidate the material removal mechanisms in the composite material.
- Material removal occurs via lateral cracking in ‘matrix-rich’ regions.
- Both brittle and ductile modes are operative at lower impingement angles, and act jointly to remove material.

\[\alpha = 90^\circ \] \[\alpha = 30^\circ \]

- For impact events near fiber tows, regions of exposed, intact fibers are observed.
- Cracking occurs along the ‘weak’ fiber-matrix interface and de-bonded matrix material is removed.
- Observations suggest interfacial strength may be an important parameter for understanding the erosion behavior.
Solid Particle Erosion in a Plasma Spray – Physical Vapor Deposition Environmental Barrier Coating

Journal Publication: Presby, M.J., Harder, B.J. (2021) “Solid particle erosion of a plasma spray – physical vapor deposition environmental barrier coating in a combustion environment,” Ceramics International. Accepted manuscript available on ntrs.nasa.gov
Experimental Procedure

Target Material System

- Ytterbium disilicate (Yb$_2$Si$_2$O$_7$/YbDS) EBC
 - Deposited via plasma spray – physical vapor deposition (PS-PVD)
 - No bond coat
 - SiC Hexoloy SA (α-SiC) substrate
 - Coating thickness: 250µm (average)
 - 25.4 x 25.4 x ~3.25-mm (L x W x t)

<table>
<thead>
<tr>
<th>Mean particle size Al$_2$O$_3$ erodent, d [µm]</th>
<th>Impingement angle, α [deg]</th>
<th>Particle velocity, v [m/s]</th>
<th>Particle kinetic energy, U_k [µJ]</th>
<th>Test Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>90</td>
<td>150</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>135</td>
<td>4.07</td>
<td>1,200</td>
</tr>
<tr>
<td>150</td>
<td>90</td>
<td>100</td>
<td>34.90</td>
<td></td>
</tr>
</tbody>
</table>
Results: Normal Impingement

• A well-defined linear region (steady-state) is observed after an initial, non-linear transient region.

• The slope of the transient region is generally higher than in steady-state.
 • Initial erosion rate > steady-state erosion rate.
 • Correlates with initial surface roughness.

• PS-PVD EBC exhibits a power law dependence with respect to U_K.
 Dependence is comparable to prediction from quasi-static erosion models for monolithic, brittle solids.
 • $b \approx 1.22$ [Wiederhorn et. al. (1979) J. Am. Ceram. Soc.]
Results: Effect of Surface Roughness

- The initial erosion rate, E', of the PS-PVD EBC exhibits a dependence on initial surface roughness:
 - Initial erosion rate, E', defined as mass loss [mg] after 1-g of exposure.
 - Higher surface roughness results in higher initial erosion rate, E'.
 - This behavior is consistent with that reported for TBCs.
Results: Effect of Impingement Angle

- Maximum erosion rate is observed at 90 degrees.
- The erosion rate decreases as the impingement angle decreases from 90 degrees:
 - \(E_{90} < E_{60} < E_{30} \)
- This behavior is characteristic of brittle-dominated erosion behavior.
Results: Erosion Damage Morphology

- **$\alpha = 90^\circ$**
 - Micro-cracking
 - Impact site
 - Scale: 10 μm

- **$\alpha = 30^\circ$**
 - Micro-cracking
 - Impact site
 - Scale: 5 μm
 - Grooves
 - Al₂O₃ particle fragment
 - Scale: 20 μm
 - Groove
 - Scale: 20 μm

Results: Erosion Damage Morphology

- Near-surface cracking generally encompasses single or multiple splats resulting in delamination and subsequent material removal.

\[d = 27 \mu m \] \[d = 60 \mu m \] \[d = 150 \mu m \]
Results: Comparison to Plasma Sprayed EBCs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Temperature [°C]</th>
<th>Particle Type</th>
<th>Particle Size, d [µm]</th>
<th>Impingement Angle, α [°]</th>
<th>Velocity, v [m/s]</th>
<th>Erosion Rate, E [mg/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singh et. al.</td>
<td>90 (vacuum)</td>
<td>Al_2O_3</td>
<td>63</td>
<td>90</td>
<td>50</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>100</td>
<td>9.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>50</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>100</td>
<td>4.19</td>
</tr>
<tr>
<td>Okita et. al.</td>
<td>1037</td>
<td>Quartz (Silica)</td>
<td>50</td>
<td>80</td>
<td>225</td>
<td>29.57 (139.972)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>225</td>
<td>23.45 (131.612)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>225</td>
<td>9.32 (119.052)</td>
</tr>
<tr>
<td>This study</td>
<td>1200</td>
<td>Al_2O_3</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>10.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>135</td>
<td>21.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>135</td>
<td>17.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>135</td>
<td>10.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>100</td>
<td>14.95</td>
</tr>
</tbody>
</table>

1Polished - Ra = 0.25
2Unpolished - Ra = 6.1

Combined Mechanisms: CMAS + SPE

Current Research
Combined Mechanisms: CMAS + SPE

- In service, a combination of molten deposits (CMAS) adhering and reacting with EBCs, and damage due to solid particle erosion will be observed (e.g., particles may not all be fully molten upon impact).
- A more ‘realistic’ test for CMAS is to inject CMAS in a combustion environment (dynamic loading).
- There is a need to understand the difference between static and dynamic CMAS loading.
- A first step is to separate the mechanisms, and then systematically combine.

CMAS (static loading)

- **CMAS (static) + SPE**
 - ~6 mg/cm²
 - ~18 mg/cm²
 - ~36 mg/cm²

- **CMAS (Dynamic Loading)**
 - 25.4mm Nozzle Diameter
 - Erodent Feed Line
 - CMAS
 - Flame
 - Cooling Air Ring
 - Aperture
 - Burner Nozzle
 - Duct, 300 mm x 26.5 mm ID
 - Burner Bar Test Article

ASME Turbo Expo 2023 Proceedings (Accepted)
Future work will begin exploration into the erosion behavior of next-generation HTEBCs.
Conclusions

• The solid particle erosion (SPE) resistance of current generation ceramic matrix composite (CMC) and environmental barrier coating (EBC) materials have been investigated at elevated temperature with respect to particle velocity / kinetic energy, and impingement angle.

• In service, EBC/CMC systems will be subject to a combination of solid and molten particles.
 • Thermomechanical mode – SPE
 • Thermochemical mode – CMAS

• Investigations into combined mechanisms (SPE + CMAS) is on-going.
 • Static vs. dynamic CMAS loading.

• Future, exploratory work on the erosion resistance of high temperature environmental barrier coatings (HTEBCs) is planned.
 • HTEBC target temperature capability is ~ 3000°F.