Effect of Redmud addition on electrical and magnetic properties of hemp-derived-biochar-containing epoxy composites

Mauro Giorcelli
Politecnico di Torino, mauro.giorcelli@polito.it

Silvia Zecchi
Politecnico di Torino

Fabrizio Ruscillo
Politecnico di Torino

Giovanni Cristoforo
Politecnico di Torino

Griffin Loebsack
ICFAR

See next page for additional authors
Follow this and additional works at: https://dc.engconfintl.org/biochar_iii

Recommended Citation

Mauro Giorcelli, Silvia Zecchi, Fabrizio Ruscillo, Giovanni Cristoforo, Griffin Loebsack, Kang Kang, Erik Piatti, Roberto Gerbaldo, Gianluca Ghigo, Daniele Torsello, Franco Berruti, and Alberto Tagliaferro, "Effect of Redmud addition on electrical and magnetic properties of hemp-derived-biochar-containing epoxy composites" in "Bio-Char III: Production, Characterization and Applications", Franco Berruti (Western University, London, Ontario, Canada); David Chiaramonti (Politecnico di Torino, Italy); Silvia Fiore (Politecnico di Torino, Italy); Manuel Garcia-Perez (Washington State University, USA); Ondrej Masek (University of Edinburgh, Edinburgh, UK) Eds, ECI Symposium Series, (2023). https://dc.engconfintl.org/biochar_iii/25

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Bio-Char III: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors

Mauro Giorcelli, Silvia Zecchi, Fabrizio Ruscillo, Giovanni Cristoforo, Griffin Loebsack, Kang Kang, Erik Piatti, Roberto Gerbaldo, Gianluca Ghigo, Daniele Torsello, Franco Berruti, and Alberto Tagliaferro

This abstract and presentation is available at ECI Digital Archives: https://dc.engconfintl.org/biochar_iii/25
Effect of Redmud addition on electrical and magnetic properties of hemp-derived-biochar-containing epoxy composites

Mauro GIORCELLI et. al.
Who I’m:

Electronic Eng.
PhD Physics
Professor of Physics

mauro.giorcelli@polito.it
Motivation: why are we interested in electrically conductive composites?

Electrically conductive composites are attractive because they offer a unique combination of electrical, mechanical, and chemical properties, making them versatile and suitable for a wide range of applications in fields such as electronics, industry, medicine, and many others. Their ability to be customized to meet specific needs makes them even more valuable in technological innovation.
Motivation: why are we interested in electrically conductive composites?
Red Mud: a metal-rich waste

The main content is Fe$_2$O$_3$, which gives the reddish color. Also present are Al$_2$O$_3$, TiO$_2$, SiO$_2$ and other oxides.
Red mud and...

1. Kraft Lignin
2. Hemp fibers
3. Pine wood

Co-Pyrolysis treatment @ ICFAR
15°C/min up to 600°C
Red mud is not conductive. The more red mud added the worse the conductivity of the mixture.
Electrical conductivity DC

Red mud is not conductive. The more red mud added the worse the conductivity of the mixture.

BC from Hemp was selected
Second step annealing @ 900°C
Static furnace 5°C/min for 2 hours

<table>
<thead>
<tr>
<th>Element (wt.%)</th>
<th>RM Amount (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM</td>
</tr>
<tr>
<td>C</td>
<td>0.0</td>
</tr>
<tr>
<td>O</td>
<td>42.9</td>
</tr>
<tr>
<td>Na</td>
<td>6.1</td>
</tr>
<tr>
<td>K</td>
<td>0.3</td>
</tr>
<tr>
<td>Mg</td>
<td>0.0</td>
</tr>
<tr>
<td>Ca</td>
<td>0.6</td>
</tr>
<tr>
<td>Al</td>
<td>12.1</td>
</tr>
<tr>
<td>Si</td>
<td>6.8</td>
</tr>
<tr>
<td>P</td>
<td>1.5</td>
</tr>
<tr>
<td>S</td>
<td>0.0</td>
</tr>
<tr>
<td>Ti</td>
<td>3.5</td>
</tr>
<tr>
<td>Fe</td>
<td>26.3</td>
</tr>
</tbody>
</table>

EDX analysis of neat Red Mud and Red Mud Biochar
Electrical DC conductivity for epoxy based composites

Ohm law to evaluate Electrical conductivity

\[
\sigma = \frac{1}{\rho} = \frac{l(m)}{R(\Omega)A(m^2)}
\]

4 order of magnitude
Electrical DC conductivity for epoxy based composites *in function of pressure*

Ohm law to evaluate Electrical conductivity

\[\sigma = \frac{1}{\rho} = \frac{l(m)}{R(\Omega)A(m^2)} \]
Electrical conductivity AC for composites
Epoxy+30wt% (RM+BC)

Increasing the ratio of red mud to biochar in the filler, the values of conductivity tend to decrease.
Magnetization curves (hysteresis cycles)
Magnetization curves (hysteresis cycles)

Epoxy+30wt% (RM+BC)

Red Mud or Biochar alone (Paramagnetic)
Coclusions

1. The modification of the ratio between RM and hemp allowed us to **enhance the electrical or magnetic properties** of the material employed as a filler in composite samples.
2. The increment of the RM-to-hemp ratio led to a significant **reduction of conductivity (insulating behavior of inorganic particles)** of the resulting BC under both DC and AC regimes while it increased the magnetic signal of the composites.
3. The simultaneous good conductive and magnetic properties of BC-containing composites could represent a solid solution to produce **microwave-shielding materials and magnetic-responsive composites**.
4. These high-value applications support the inclusion of RM into the thermochemical conversion of hemp leading the way for the virtuous **use of complex waste streams**.
Thank you for your attention!

mauro.giorcelli@polito.it