Development of suspensions adapted Vero cell culture process for production of viruses

Chun Fang Shen
National Research Council, Canada, chunfang.shen@cnrc-nrc.gc.ca

Claire Guilbault
National Research Council, Canada

Mehdy Elahi
National Research Council, Canada

Sven Ansorge
National Research Council, Canada

Lakshmi Krishnan
National Research Council, Canada

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/vt_vii

Part of the [Engineering Commons](http://dc.engconfintl.org/vt_vii)

Recommended Citation
Authors
Chun Fang Shen, Claire Guilbault, Mehdy Elahi, Sven Ansorge, Lakshmi Krishnan, Rénald Gilbert, Xiuling Li, and Amine Kamen

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/vt_vii/89
Development of Suspension Adapted Vero Cell Culture Process for Production of Viruses

Chun Fang Shen, PhD
Cell Culture Scale-Up
Human Health Therapeutics Research Center
chunfang.shen@nrc-cnrc.gc.ca
Background

- Vero cells are considered as the most widely accepted continuous cell line by the regulatory authorities (such as WHO) for the manufacture of viral vaccines for human use.

- The continuous Vero cell line has been used, after propagation on microcarriers, for the production of rabies, polio, enterovirus 71 and hantaan virus vaccines.

- The Vero cell line has gained worldwide acceptance as cell culture production platform in the vaccine field.

- The Vero cell culture technologies were explored for productions of many more anti-viral vaccines in the last two decades.
The growth of Vero cell is anchorage-dependent. They are labor intensive and limited in scale-up production when the Vero cell is grown in traditional two-dimensional culture methods and in microcarriers.

Current Vero Cell Culture Technologies

- **Traditional two-dimensional culture technique**

- **Microcarrier cell culture technology**
The growth of Vero cell is anchorage-dependent. They are labor-intensive and limited in scale-up production when the Vero cell is grown in traditional two-dimensional culture methods and in microcarriers.
Limitations of Anchorage-dependent Cell Culture Technologies in process scale-up

- Cells are dissociated enzymatically or mechanically, labor intensive.
- Growth is limited by surface area, which may limit product yields.

Vaccine manufacturing process using adherent cells in single-use bioreactors (Vero, 200-L scale) Calvosa & Seve. US 20110151506 A1
Suspension Cell Culture

- Subculturing is a simple matter of dilution.
- There is little or no growth lag after splitting a suspension culture.
- Scale-up is straightforward.

High-scale virus production process overview with single-use bioreactor systems using suspension EB66 cells at 200-L scale (Madeline et al. 2015)
Media for anchorage Vero cell culture:

- Serum-containing media: costly, lot-to-lot inconsistency, threat of contamination.

- Serum-free media:
 - VP-SFM (Life technologies)
 - OptiPro SFM (Life technologies)
 - EX-CELL Vero SFM (SAFC Biosciences)
 - ProVero (Lonza)
 - HyQ SFM4MegaVir (Hyclone)
Benchmark of Commercial Serum-free Media for Vero Cell Cultures

Performance Indicators of culture medium

- Maximum cell density in batch culture
- Cell doubling time
- Virus productivity

Comparison of Vero cell growth on Cytodex 1 microcarriers in five different serum-free media (Chen et al. 2011)
Current status of commercial serum-free media for Vero cell

Sum up:

• No commercial serum-containing or serum-free media is available for suspension Vero cell.

• Maximum cell density of adherent Vero cell achieved in microcarriers batch culture is generally lower than 2.5×10^6 cells/mL.

• Doubling time of adherent Vero cell in microcarrier culture is 45 hours or longer.
Overview of Suspension Adapted Vero Cell

- Advantage and benefit of suspension Vero cell culture process over adherent culture in large-scale manufacturing.

 ✓ A Vero cell line (ATCC CCL-81 origin) has been adapted to grow in suspension in an in-house developed serum-free medium.

 ✓ The adapted cell was found genetically stable by short tandem repeat analysis.

 ➢ Tumorigenicity test of suspension adapted cell is in progress.

Shake flask batch culture of suspension adapted Vero cell in serum-free and animal component free medium
Adaptation of Vero cell to grow in suspension and serum-free media at NRC Montreal

Suspension adapted Vero cell cultured in 125 mL shake flask and observation of culture under a microscope.
Comparison on virus productivity between adherent and suspension adapted Vero cells

- Production of vesicular stomatitis virus (VSV) in adherent (T175) and suspension adapted (SF, 125 mL shake flask) Vero cell cultures with medium replacement before the viral infection.
- The suspension adapted cell showed better productivity than the adherent one.

- Influenza virus was used as another model to investigate the virus productivity of suspension adapted Vero cell.
- The suspension adapted cell seems to have lost some productivity of hemagglutinin (HA).
Production of VSV in a 3L bioreactor perfusion culture

- The cell density in the bioreactor reached 6.8x10^6 cells/mL after 2 days of perfusion at 0.5 vvd and another day at 1 vvd before the virus infection (A).

- The VSV titer in the bioreactor culture was similar to that achieved in the shake flask control cultures infected at 6x10^6 cells/mL and was nearly one log higher than that in the reference culture infected at 1x10^6 cells/mL (B).