Structure and properties of condensed gradient coatings with NiAl-bond coat doped with Y or Dy

A.V. Mykytchyk
State-Run Company, International Center for Electron Beam Technologies (ICEBT) of E.O. Paton Electric Welding, NASU, yakovchuk@paton-icebt.kiev.ua

K. Yu Yakovchuk
ICEBT

Yu.E. Rudoy
ICEBT

E.V. Onoprienko
ICEBT

R.A. Tkach
ICEBT

Follow this and additional works at: http://dc.engconfintl.org/tbcv

Part of the Engineering Commons

Recommended Citation
The aim: Improvement of thermal cyclic durability of EB-PVD NiAl/ZrO$_2$-8%Y$_2$O$_3$ (NiAl/8YSZ) thermal barrier coatings (TBC) by doping oxidation-resistant metal bond coat of NiAl with Y or Dy additives.

Main tasks:
- check the possibility of deposition of EB-PVD TBC NiAl/8YSZ 30-50 µm/140-160 µm thick (including those with graded distribution of additives in the bond coat) in one process cycle.
- study the influence of Y and Dy additives to NiAl on the structure and properties of EB-PVD TBC NiAl/ZrO$_2$-8%Y$_2$O$_3$ in as-deposited condition and after vacuum heat treatment.

Materials and methods:
TBC NiAl/8YSZ, NiAlY/8YSZ and NiAlDy/8YSZ were deposited on one side of coupons of 12.7 mm diameter and 4 mm thickness, made from ZhS32, PWA 1480 and CMSX-4 superalloys. Single-step technology of TBC deposition in one EB-PVD unit by one deposition run was used: oxidation-resistant metal bond coat was deposited by evaporation of pre-fused NiAl tablet of the specified mass from one crucible with subsequent deposition of outer ceramic layer by evaporation of 8YSZ ingot from another crucible. Direct electron beam heating was applied in all the cases (both for sample preheating, and for evaporation of metal and ceramics).

Thermal cyclic furnace tests were conducted with application of 1-hour cycle, including soaking at the temperature of 1150 °C for 45 min. Sample examination during testing was conducted every 20 cycles.

Thermal-cyclic lifetime of NiAlDy/ZrO$_2$-8%Y$_2$O$_3$ gradient coating with different Dy content

Thermal-cyclic lifetime of NiAlZrO$_2$-8%Y$_2$O$_3$ coating with different dopants

Thermal-cyclic lifetime increase of NiCoCrAlY/ZrO$_2$-8%Y$_2$O$_3$, TBC by deposition of additional transitional zone NiAlDy in 1.5 times

Conclusion: Doping of NiAl bond coat with Y or Dy makes it possible to increase the thermal cyclic durability of composite TBC deposited by EB-PVD by 8-15 times. The composite TBC NiAlDy / ZrO$_2$-8%Y$_2$O$_3$, with the graded distribution of dysprosium in the NiAl bond coat with its maximum concentration under the TGO layer at 4...9% has the highest thermal cyclic durability. It is established that the dysprosium segregates along and inside grain boundaries of NiAl in the form of Ni$_3$Al$_2$Dy$_2$ type particles of 5 nm to 20 µm sizes, and also in the Al$_2$O$_3$ scale layer at the metal-ceramic interface, presumably as a DyAlO$_3$ compound.

The positive effect of dysprosium doping is provided by:
- reduction of NiAl grain size by 4-5 times;
- increase of thermal stability of the NiAl bond coat by slowing down the diffusion processes by 20 ... 25%;
- increasing the adhesion of the scale layer of Al$_2$O$_3$ at the metal-ceramic interface due to the penetration of spindle-shaped particles based on dysprosium oxide inside the NiAl layer.

Presumably, globular and spindle-shaped particles of compounds Dy with Ni, Al and O (like DyNiAl, DyNiAl$_2$, DyAlO$_3$) segregates inside β-NiAl grains and along its boundaries (SEM and EDX analysis data)

Intermetallic Ni$_3$Y particles with equiaxial shape and uniform localization in the β-NiAl matrix - within the grains and along its boundaries, are precipitated, the size of the precipitate is 100 ... 200 nm.

Microstructure after 600 thermal cycles of the: (a) gradient NiAlDy/ZrO$_2$-8%Y$_2$O$_3$, coating, (b) TGO layer, (c) surface of the NiAlDy bond coat