3-point measurement in solid state devices: (Novel) artifacts and how to avoid them

Tobias Huber
TU Wien, Austria

Richard Schlesinger
Institute of Chemical Technologies and Analytics, Vienna University of Technology, Austria

Markus Kubicek
Institute of Chemical Technologies and Analytics, Vienna University of Technology, Austria

Jürgen Fleig
Institute of Chemical Technologies and Analytics, Vienna University of Technology, Austria

Alexander Schmid
Institute of Chemical Technologies and Analytics, Vienna University of Technology, Austria

Follow this and additional works at: https://dc.engconfintl.org/nonstoichiometric_vii

Part of the Engineering Commons

Recommended Citation
https://dc.engconfintl.org/nonstoichiometric_vii/8

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Nonstoichiometric Compounds VII by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
3-point Measurement in Solid State Devices: (Novel) Artefacts and How to Avoid Them

Richard Schlesinger 1, Tobias M. Huber 1,2,3, Alexander Schmid 1, Markus Kubicek 1, and J. Feig 1

Introduction

There are two common methods to measure the impedance response of only one electrode of a solid-state electrochemical cell: microelectrodes or a three-terminal configuration. In aqueous electrochemistry, three-terminal configurations are widely used, however, implementing this method in solid-state electrochemistry is highly non-trivial. This work summarises, which method is most suitable for different applications. We show potential error sources and evaluate each of them quantitatively with special emphasis on their impact in thin film electrode measurements. Evaluation is done by means of finite elements analysis (FEA), electric circuit simulations and impedance measurements.

Three potential error sources were identified as particularly crucial factors:
(i) Asymmetric sample cells
(ii) Short circuit currents across the reference electrode (RE),
(iii) Especially for highly resistive electrodes, coupling capacitances between the three electrodes. These error sources can result in different measurement errors such as additional high frequency semicircles, additional low frequency semicircles, inductive loops and even more critical, erroneous electrode properties without indicating of additional features in the impedance spectrum.

3-Terminal Approaches in Literature

Many attempts were already tried to minimize errors in three-terminal measurements [1-4]. Geometries as shown in Fig. 1 suffer from many shortcomings:
(i) Very complicated and expensive to fabricate
(ii) Limited to simple electrodes. E.g. hard to use different deposition methods and to change microstructures of the electrodes
(iii) Errors strongly depend on geometrical factors and thereby on manufacturing limitations such as the hole diameter and depth (l and b in Fig. 1)
(iv) Very thick electrolytes are necessary for electrodes with small resistances cannot be measured

The novel “WING GEOMETRY”

We propose a novel sample geometry, the Wing Geometry, which was designed to minimize the measurement errors significantly, but still remains affordable and suitable for different applications.

Adantages of Wing Geometry:
+ WE/CE alignment easy to achieve
+ short circuit effect avoided
+ no error for identical WE, CE
+ similar to produce as regular symmetrical cells

Practical solutions for the “WING GEOMETRY”

Error sources:
- 3-point transfer characteristic for high ohmic electrodes and high frequencies
- Reference potential shift caused by WE/CE
 - Geometrically asymmetry
 - Resistive asymmetry
 - Capacitive asymmetry
 - Short circuit effect

This capacitance can be cancelled out by actively shielding the reference electrode coaxial cable. This measure forces the shield of the BNC cable on the same potential like its core, which actively eliminates the capacitance.

Fig. 8 a) Equivalent circuit for a sample with 3 terminal connection, b) The two-terminal equivalent network of a three-terminal electrochemical cell [9]

Limitations of the “WING GEOMETRY”

Fig. 9 a) Wing geometry with b) Current distribution (ω → ∞)

Fig. 10 Measurement errors for worst case scenario (low-resistive electrodes and identical relaxation times) with given geometry and changing protrusion height (blue arrow in Fig. 11), protrusion depth = 0.5 mm (red arrow in Fig. 11), electrolyte thickness = 1 mm.

This intrinsic error source can be minimized by minimizing a and b.

Fig. 11 Wing geometry with indicated protrusion of the electrolyte wing, red and blue in X and Y direction respectively

Abbreviations

Acknowledgements

The authors would like to acknowledge Austrian Science Fund (FWF) (project: SFB-F4502-N16 FOXSI)

References

WE... Working electrode
RE... Reference electrode
CE... Counter electrode
Rpol... Polarization resistance
Capac... Chemical capacitance