Synthesis gas by catalytic steam reforming of bio-oil.

F. Bimbela, J.A. Medrano, L. García, M. Oliva, J. Ruiz, De Chen, J. Arauzo

Thermochemical Processes Group (GPT)
Aragón Institute for Engineering Research (I3A)
University of Zaragoza, María de Luna, 3, E-50018, Zaragoza, Spain
Hydrogen economy:

- Increasing interest in Hydrogen economy:
 - Several chemical uses.
 - Utilization as clean fuel in high energetic efficiency systems like fuel cells in stationary, mobile or portable applications that can be used in vehicles.
THERMOCHEMICAL CONVERSION

Supercritical conditions
- CH_4/CO_2
 - Reforming + Shift
 - H_2/CO_2

GASIFICATION
- CH_4/CO_2
 - Reforming + Shift
 - $\text{CH}_3\text{OH}/\text{CO}_2$
 - H_2/CO
 - Synthesis
 - Shift

PYROLYSIS
- Flash
 - Bio-oil
 - Reforming + Shift
 - H_2/C

Severe
Steam reforming of pyrolysis liquids (Bio-oil):

Pyrolysis

Bio-oil

BTG process (fast pyrolysis)

- Complex mixture of organic compounds and water*.
- Are unstable and suffer from aging.

Steam reforming:

- Vegetable oils:
 - Sunflower
 - Soya
 - Rapeseed
 - Palm
 - ...

- Trap grease

- Bioethanol
Steam reforming:

- Bioethanol
- Biobutanol
Steam reforming:

- Important increasing in biodiesel production

Glycerol prices decrease, so it is necessary to find new ways to convert glycerol into valuable added products $\rightarrow H_2$
Steam reforming of pyrolysis liquids (Bio-oil):

Aqueous fraction

Ligninic fraction

Higher stability

High valuable coproducts from bio-oil*

OBJECTIVES:

- Experimental work with model compounds and with the aqueous fraction of bio-oil both at micro and bench scales.

- Development of suitable catalysts for the process:
 - Adequate catalytic activity and selectivity towards H_2.
 - Resistance to deactivation by coking deposition.
 - Resistance to attrition to work at fluidized bed.

- Development of the process at a bench-scale fluidized-bed facility and scale up to a demonstration plant.
CHARACTERISTICS OF BIO-OIL*

(*Oasmaa and Meier, J. Anal. Appl. Pyrol. 73, (2005), 323)

- Heterogeneous properties (feedstock)
- Colour: Dark red / brown
- Odour: smoke like
- Quite viscous at room temperature
- Thermally unstable (polymerization)
- High oxygen content (ca. 40 % dry matter)
- pH: 2.3 – 2.8

ORGANICS / WATER (85/15 w/w)

WATER ADDITION:

AQUEOUS FRACTION

- Alcohols
- Carboxylic acids
- Sugars
- Aldehydes
- Ketones
- Complex carbohydrates
- Lignin derived materials

WATER INSOLUBLE FRACTION (Pyrolytic lignin)

Fine Chemicals (Kelley et al., 1997; Shabtai et al., 1997)

Catalytic Steam Reforming (Czernik et al., 1997)
CHARACTERISTICS OF BIO-OIL

(*Oasmaa and Meier, J. Anal. Appl. Pyrol. 73, (2005), 323*)

Table 15
Determination of acids (wt.% based on wet liquid)

<table>
<thead>
<tr>
<th>No.</th>
<th>9^-</th>
<th>12^-</th>
<th>3^-</th>
<th>5^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formic acid</td>
<td>6.29</td>
<td>9.35</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Acetic acid</td>
<td>1.7</td>
<td>7.84</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Acrylic acid</td>
<td>0.05</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionic acid</td>
<td>0.17</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyric acid</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methacrylic acid</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Butyric acid</td>
<td>0.07</td>
<td>1.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactic acid</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycolic acid</td>
<td>6.34</td>
<td>6.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citric acid</td>
<td>0.04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeric acid</td>
<td>0.01</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methylpentanoic acid</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Hydroxypropanoic acid</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Oxopentanoic acid</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactic acid</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyric acid</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lignin derived materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Laboratory No.

Table 17
Determination of aldehydes, ketones, and alcohols (wt.% based on wet liquid)

<table>
<thead>
<tr>
<th>No.</th>
<th>9^-</th>
<th>12^-</th>
<th>3^-</th>
<th>5^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>0.84</td>
<td>8.92</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>0.14</td>
<td>1.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxyacetaldehyde</td>
<td>3.52</td>
<td>6.42</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>0.54</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetol</td>
<td>2.07</td>
<td>7.62</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>1-Hydroxy-2-butanone</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hydroxy-2-cyclopentanone-1-one</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hydroxy-2-methyl-2-cyclopentanone-3-one</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinacolaldehyde</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>0.06</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraldehyde</td>
<td>0.49</td>
<td>0.2</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>5-Hydroxy-2-pentanone</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Hydroxy-2-pentanone-1-one</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Laboratory No.

Table 18
Determination of sugars (wt.% based on wet liquid)

<table>
<thead>
<tr>
<th>No.</th>
<th>12^-</th>
<th>3^-</th>
<th>5^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-arabinose</td>
<td>0.04</td>
<td>4.03</td>
<td>7.6</td>
</tr>
<tr>
<td>Glucose</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylose</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabinose</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.1</td>
<td>4.8</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Great complexity!

- Alcohols
- Carboxylic acids
- Sugars
- Aldehydes
- Ketones
- Complex carbohydrates
- Lignin derived materials

Experimental work with model compounds:
- Acetic acid
- Acetol
- 1-Butanol
- D-Fructose
CATALYSTS PREPARED AT INCREASING pH

Ni(NO$_3$)$_2$·6H$_2$O

Al(NO$_3$)$_3$·9H$_2$O

pH=7.9

T = 40°C

COPRECIPITATION

FILTERING

DRYING

3h, 3h, 3h, 3h,

REDUCTION

10 % H$_2$, T = 650°C

1 hour

HYDRATED PRECURSOR

NH$_4$OH

3h, T = 750°C

CALCINATION

ACTIVATED CATALYST

CALCINED PRECURSOR

COPRECIPITATION

CALCINATION

T = T = T =

40ºC 40ºC 40ºC 40ºC

COPRECIPITATION

CALCINATION
Characterization: Catalysts prepared at increasing pH

XPS

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ni 2p$_{3/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 %</td>
<td>856.6 (2.9)</td>
</tr>
<tr>
<td>28 %</td>
<td>856.0 (2.8)</td>
</tr>
<tr>
<td>33 %</td>
<td>856.0 (2.9)</td>
</tr>
</tbody>
</table>

XRD

BET:
- 23 % Ni $\rightarrow S_g = 205 \text{ m}^2/\text{g}$
- 28 % Ni $\rightarrow S_g = 205 \text{ m}^2/\text{g}$
- 33 % Ni $\rightarrow S_g = 180 \text{ m}^2/\text{g}$

ICP – OES:

<table>
<thead>
<tr>
<th>Theoretical</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 %</td>
<td>22.0 %</td>
</tr>
<tr>
<td>28 %</td>
<td>26.9 %</td>
</tr>
<tr>
<td>33 %</td>
<td>32.1 %</td>
</tr>
</tbody>
</table>
CATALYSTS PREPARED AT CONSTANT pH

FILTERING

DRIYING

Mg(NO₃)₂·6H₂O

Ni(NO₃)₂·6H₂O

Al(NO₃)₃·9H₂O

Cu(NO₃)₂·3H₂O

HYDRATED PRECURSOR

6h, T = 650ºC

10% H₂, 10 hours

REDUCTION

ACTIVATED CATALYST

CALCINATION

6h, T = 600ºC

CALCINED PRECURSOR

COPRECIPITATION

pH=8.5

NaOH

Na₂CO₃

Aging:
T = 80ºC, 15h

Aquatization

pH=8.5

NaOH

Na₂CO₃
Study with Microactivity plant*

- **Microactivity plant:**
 - Micro-scale fixed bed

- **Experiments with different model compounds:**
 - Acetic acid
 - Acetol
 - 1-Butanol
 - D-Fructose

- **Optimized experimental conditions:**
 - 650°C
 - 1 h previous reduction
 *Nickel content of the catalyst: 23, 28 and 33 % (Ni/(Ni+Al) relative at. %)
 *Ni/Al modified with Cu and Mg: Collaboration with the Norwegian University of Science and Technology (NTNU, Trondheim (Norway)).

Results reported by Bimbela, F. et al., J. Anal. Appl. Pyrol., 79 (2007) 112
Fixed bed microactivity setup
Experimental Conditions

- Atmospheric pressure, reaction temperature set at 650°C.
- Liquid feeding rate: 0.15 mL/min of acetic acid aqueous solution (23% w/w)
- 0.05 g of catalyst and ca. 1.5 g sand (particle size: 160-320 μm)
- \(W/m_{\text{HAc}} \sim 1.46 \, g_{\text{catalyst}} \cdot \text{min}/g_{\text{acetic acid}}, \) \(S/C \) molar ratio = 5.58
- \(G_{c1} \)HSV \sim 28500 h\(^{-1}\)
- 1 h reduction time
- 2 h reaction time
Catalytic steam reforming of ACETOL: Influence of the nickel content and reaction temperature

\(\text{W/m}_{\text{Ac}} = 0.88 \text{ g cat} \cdot \text{min/g Ac} \)

650 °C: Better performance: 28 % Ni. 23 % y 33 % display similar performances.
ACETIC ACID VS ACETOL

Non catalytic reforming, 650 °C

Catalytic Reforming. W/m_{org} = 1.46 g·min/g, 650 °C

↓ Significant non catalytic reforming for acetol.

↓ Slower decrease of the catalytic activity for acetol.
ACETIC ACID VS ACETOL

ACETOL:

- Better catalytic reforming:
 - Much higher carbon conversion.
 - Greater gas yields.
- CH₄, C₂H₄ and C₂H₆ detected.
- Product gas compositions:
 - similar H₂
 - higher CO
 - lower CO₂
Fluidized bed plant:
Experimental conditions

- Atmospheric pressure and 650°C temperature
- Liquid flow rate: 0.75-0.77 ml/min acetic acid aqueous solution
- 7 cm height bed: 1.1 g catalyst and ~38 g sand (particle size of 160-320 μm)
- $W/m_{HAc} \sim 6 \frac{g_{catalyst \cdot min}}{g_{acetic \ acid}}$, S/C molar ratio = 5.58
- $u/u_{mf} = 10$ \quad $G_{c1 \ SHV} \sim 6800 \ h^{-1}$
- 2 h reaction time
Screening of catalysts. Attrition tests.

- Fluidization attrition requirements: % weight loss/h < 0.5 % weight/h*
- Maximum resistance to attrition for D catalyst

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>A*</th>
<th>A2*</th>
<th>B</th>
<th>B2</th>
<th>C</th>
<th>C2</th>
<th>D</th>
<th>D2</th>
<th>E†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative atomic % (Ni/(Ni+Al))</td>
<td>15</td>
<td>15</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>Calcination temperature (°C)</td>
<td>750&750</td>
<td>900&750</td>
<td>750</td>
<td>850</td>
<td>750</td>
<td>900</td>
<td>750</td>
<td>900</td>
<td>850</td>
</tr>
<tr>
<td>Ca/Ni molar ratio</td>
<td>0.32</td>
<td>0.32</td>
<td>0</td>
<td>0</td>
<td>1.29</td>
<td>1.29</td>
<td>0.31</td>
<td>0.31</td>
<td>5.00</td>
</tr>
<tr>
<td>Ca/Al molar ratio</td>
<td>0.06</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0.50</td>
<td>0.50</td>
<td>0.12</td>
<td>0.12</td>
<td>2.50</td>
</tr>
<tr>
<td>Attrition (% weight loss/h)</td>
<td>0.62</td>
<td>0.46</td>
<td>1.16</td>
<td>0.99</td>
<td>1.47</td>
<td>0.69</td>
<td>0.22</td>
<td>0.16</td>
<td>3.25</td>
</tr>
</tbody>
</table>

*Prepared by impregnation. Support calcined at 900°C and impregnated precursor calcined at 750°C.

†Prepared by coprecipitation method at constant pH (precipitating agent: NaOH and NaNO₃ solution).
Catalysts:

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Preparation method</th>
<th>wt% Ni</th>
<th>Mg/Al molar ratio</th>
<th>Ca/Al molar ratio</th>
<th>Attrition rate (wt%/h)*</th>
<th>Sustainable fluidizable catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiAl</td>
<td>Coprecipitation</td>
<td>28.5</td>
<td>0</td>
<td>0</td>
<td>1.16</td>
<td>No ✗</td>
</tr>
<tr>
<td>NiMgAl0.26</td>
<td>Coprecipitation</td>
<td>29.3</td>
<td>0.26</td>
<td>0</td>
<td>0.27</td>
<td>Yes ✓</td>
</tr>
<tr>
<td>NiCaAl0.12</td>
<td>Coprecipitation</td>
<td>26.3</td>
<td>0</td>
<td>0.12</td>
<td>0.22</td>
<td>Yes ✓</td>
</tr>
<tr>
<td>NiCaAl0.03 imp</td>
<td>Impregnation</td>
<td>7.5</td>
<td>0</td>
<td>0.03</td>
<td>0.46</td>
<td>Yes ✓</td>
</tr>
</tbody>
</table>

* wt%/h: weight of catalyst lost per hour.
Sustainable fluidizable catalyst when attrition rate < 0.5 wt%/h.

Butanol steam reforming:

\[W/m_{\text{butanol}} = 6 \text{ g catalyst} \cdot \text{min/g butanol} \]

\[W/m_{\text{butanol}} = 2 \text{ g catalyst} \cdot \text{min/g butanol} \]

- Complete carbon conversion at \(G_{C_1} \) HSV of around 6000 h\(^{-1}\)

- \(G_{C_1} \) HSV \(\sim 6000 \text{ h}^{-1} \)

- \(G_{C_1} \) HSV \(\sim 33800 \text{ h}^{-1} \)

650ºC, 1 atm, S/C = 14.7, \(u/u_{mf} = 10 \)
Butanol steam reforming:

- Except with the impregnated catalyst CaAl 0.03 imp → low activity. 😞
 - Its catalytic activity is lower in butanol steam reforming than in acetic acid or acetol steam reforming where 99% and 88% carbon conversion were obtained respectively. 😞

FLUIDIZED BED PLANT

NiAl □ □
NiMgAl 0.26 □ □
NiCaAl 0.12 □ □
NiCaAl 0.03 imp □ □

\[W/m_{\text{butanol}} = 6 \text{ g catalyst} \cdot \text{min/g butanol} \]

\[W/m_{\text{butanol}} = 2 \text{ g catalyst} \cdot \text{min/g butanol} \]

- \(G_{C_1} \text{HSV} \approx 6000 \text{ h}^{-1} \)
- \(G_{C_1} \text{HSV} \approx 33800 \text{ h}^{-1} \)

650°C, 1 atm, S/C = 14.7, \(u/u_{mf} = 10 \)
Butanol steam reforming:

- Mg and Ca modified coprecipitated catalysts can perform with a good activity and with a higher resistance to attrition than the non modified Ni/Al catalyst.

| Catalyst | Activity
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NiAl</td>
<td></td>
</tr>
<tr>
<td>NiMgAl 0.26</td>
<td></td>
</tr>
<tr>
<td>NiCaAl 0.12</td>
<td></td>
</tr>
<tr>
<td>NiCaAl 0.03 imp</td>
<td></td>
</tr>
</tbody>
</table>

650°C, 1 atm, S/C = 14.7, \(\frac{u}{u_{mf}} = 10 \)

\(G_{ClHSV} \approx 6000 \, \text{h}^{-1} \)

\(G_{ClHSV} \approx 33800 \, \text{h}^{-1} \)
Butanol steam reforming:

650°C, 1 atm, S/C = 14.7, u/u_{mf} = 10, \ W/m_{butanol} = 2 \ g_{catalyst} \ min/g_{butanol}

- Equilibrium
- NiAl
- NiMgAl 0.26
- NiCaAl 0.12
- NiCaAl 0.03 imp

- Mg and Ca modified catalysts showed close hydrogen yields to the non modified catalysts.
Butanol steam reforming:

650ºC, 1 atm, S/C = 14.7, \(u/u_{mf} = 10 \), \(W/m_{\text{butanol}} = 6 \text{ g}_{\text{catalyst}} \cdot \text{min/g}_{\text{butanol}} \), \(W/m_{\text{butanol}} \) from 2 to 6

Equilibrium hydrogen yields are reached with all the catalysts.
Aqueous fraction of bio-oil

- Bio-oil supplied by BTG (technology based on rotating cone reactor)
- Aqueous fraction prepared by dropwise water addition with continuous stirring
- Elemental analysis: $C_{1.4} H_{3.4} O_{1}$
- $S/C = 7.64$
- $pH = 2.52$
- Water/organic mass ratio: 85/15
Steam reforming of the aqueous-phase of bio-oil:

- 73.5% carbon conversion
- 63.3% H2 (%mol, N2 and H2O Free)

NiAl catalyst
28.5 wt% Ni

650°C, 1 atm, S/C = 7.64, u/umf = 10
W/m Aqueous Fraction of Bio-Oil ~ 4, GC1SHV ~ 11800 h⁻¹
Catalytic steam reforming of the aqueous fraction

- Experimental conditions: 2 h reaction at 650 ºC, $G_{C_1HSV} = 19000 \text{ h}^{-1}$
- No operational problems detected
- Recovery (liquid+gas) = 97.5 %
- Carbon conversion averages 70 % during the first hour of reaction
- 28 % Ni catalyst reduced in diluted H$_2$ (H$_2$:N$_2$ 1:10 vol.) at 650 ºC for 1 h
- Other catalysts tested: 23 % and 33 % Ni (increasing pH method) and 0, 1, 3, 5 and 10 % Cu (constant pH method)

- Average gas composition (vol. %):
 - H$_2$ = 67.4
 - CO = 6.3
 - CO$_2$ = 25.5
 - CH$_4$ = 0.5
Synthesis gas by catalytic steam reforming of bio-oil.

F. Bimbela, J.A. Medrano, L. García, M. Oliva, J. Ruiz, De Chen, J. Arauzo

Thermochemical Processes Group (GPT)
Aragón Institute for Engineering Research (I3A)
University of Zaragoza, María de Luna, 3, E-50018, Zaragoza, Spain