Effect of catalytic site position of carbon nanotubes supported cobalt catalysts in Fischer-Tropsch synthesis

E. Epelde a, eva.epelde@ehu.es
V. R. Surisetty b, M. Trepanier b, A. K. Dalai b

a Departamento de Ingeniería Química, Universidad del País Vasco,
bDepartment of Chemical Engineering, University of Saskatchewan
Worldwide decrease in oil reserves and high demand of clean energy reinforce the interest of Fischer-Tropsch (FT) synthesis to produce viable and clean-energy.

Importance of FTS:

- Syngas produced from non-petroleum sources
- Sulfur- and nitrogen-free high quality fuels (diesel and gasoline)
- Petrochemicals (olefins)

Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

Fischer-Tropsch is a heterogeneous catalytic process for the transformation of synthesis gas (H₂+CO with different ratio)

Reactions involved in Fischer-Tropsch Synthesis (FTS)

- **Paraffins formation:** \((2n + 1)\text{H}_2 + n\text{CO} \rightarrow C_n\text{H}_{2n+2} + n\text{H}_2\text{O}\)
- **Olefins formation:** \(2n\text{H}_2 + n\text{CO} \rightarrow C_n\text{H}_{2n} + n\text{H}_2\text{O}\)
- **Alcohols formation:** \(2n\text{H}_2 + n\text{CO} \rightarrow C_n\text{H}_{2n+2}\text{O} + (n - 1)\text{H}_2\text{O}\)
- **WGS reaction:** \(\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2\)
- **Methanation:** \(\text{CO} + 3\text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O}\)

Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

Catalysts for FTS: active phase

Group VIII metals (Co, Ru and Fe)

Cobalt

- High activity and selectivity to linear hydrocarbons
- Low activity for WGS reaction
- More stable toward deactivation by water
Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

Catalysts for FTS: supports

- Carbon nanotubes
 - SWNT (bundle)
 - MWNT

Most commonly used supports:
- SiO$_2$
- Al$_2$O$_3$
- TiO$_2$

Properties:
- High purity
- High mechanical strength
- Good electrical conductivity
- High thermal stability
- High surface area

AIM OF THIS WORK: Study the effect of the deposition of cobalt catalytic sites (on the inner and outer surface of the CNTs) for Fischer-Tropsch synthesis

KNOWLEDGE GAP

✓ Deviation of the graphene layers from planarity causes π electron density to shift from the concave inner surface to the convex outer surface

✓ Confinement could increase the density of reactants, which favor syngas conversion

✓ Deposition of catalytic sites inside the narrow channels could result in higher mass transfer restriction

Electron-deficient in-surface electron-enriched out-surface

Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

Catalyst preparation

Support pre-treatment
- Close cap CNTs
- HNO_3 30 wt%, 100 °C, 16 h
- Open cap CNTs

RESULTS

out-10Co/CNT
- Co particles outside the pores
- Open cap CNTs
- Water addition
- Co salt solution
- Drying, calcination

in-10Co/CNT
- Co particles inside the pores
- Co salt solution
- Drying, calcination

Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

FTS study

Fixed bed reactor (450 mm L, 22-mm i.d.)

- Mass flow controllers
- Pressure Gauges
- BP Valve
- Fixed bed reactor (450 mm L, 22-mm i.d.)

EXPERIMENTAL

- T = 210-240 ºC
- Feed: H\textsubscript{2}/CO ratio: 2 (30%CO, 60%H\textsubscript{2}, 10%Ar) 30 ml/min
- P = 2 MPa
- TOS = 48 h

- Reduction: 30 ml/min H\textsubscript{2}, 380 ºC, 1 ºC/min
Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

Evaluation criteria used for catalytic performance

- **CO conversion:** \[\% \text{CO} = \frac{\text{CO}_{\text{in}} - \text{CO}_{\text{out}}}{\text{CO}_{\text{in}}} \]

- **Product selectivity:** \[S(C_i) = \frac{\text{mass of component } C_i}{\sum C_i} \]

- **FTS rate:** \[\text{FTS rate} = \frac{\text{g of HC produced}}{\text{g of catalyst min}} \]

- **WGS rate:** \[\text{WGS rate} = \frac{\text{g CO}_2 \text{ produced}}{\text{g of catalyst min}} \]
Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

Catalyst characterization

TEM: Effect of acid treatment

- Open nanotubes caps and removes impurities from CNTs
- Introduces a large number of functional groups
- Decreases the hydrophobicity of the CNT, easier impregnation
Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

Catalyst characterization

TEM: Effect of catalytic site position

in-10Co/CNT

out-10Co/CNT
Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

EXPERIMENTAL

RESULTS

CONCLUSIONS

XRD results

- $\Delta \text{Co}_3\text{O}_4$
- $\square \text{CoO}$
- $\bigcirc \text{CNT}$

![XRD graph](attachment:image.png)

Intensity (arb. units)

2θ

0 10 20 30 40 50 60 70 80 90 100 110 120

out-10%Co/CNT
in-10%Co/CNT
Treated CNT
Fresh CNT
Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

ICP, BET results

<table>
<thead>
<tr>
<th>Supports/catalysts</th>
<th>Metal content (%)</th>
<th>BET (m²/g)</th>
<th>Pore volume (cm³/g)</th>
<th>Average pore radius (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh CNT</td>
<td>-</td>
<td>205</td>
<td>0.67</td>
<td>6.5</td>
</tr>
<tr>
<td>Treated CNT</td>
<td>-</td>
<td>264</td>
<td>0.73</td>
<td>5.5</td>
</tr>
<tr>
<td>in-10Co/CNT</td>
<td>9.5</td>
<td>218</td>
<td>0.56</td>
<td>5.1</td>
</tr>
<tr>
<td>out-10Co/CNT</td>
<td>8.5</td>
<td>197</td>
<td>0.56</td>
<td>5.7</td>
</tr>
</tbody>
</table>

\[S_{BET} (\text{in}) > S_{BET} (\text{out}) \]
Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

TPR results

$T_{\text{reduction (in)}} < T_{\text{reduction (out)}}$

$Co_3O_4 + H_2 = 3CoO + H_2O$

$CoO + H_2 = Co + H_2O$

$1^{\text{st peak}}$

$2^{\text{nd peak}}$
Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

FTS kinetic results

CO conversion & CH₄ selectivity

![Graphs showing CO conversion and CH₄ selectivity for in 10Co/CNT and out 10Co/CNT as a function of temperature (T °C).](image)
Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

Product selectivity

<table>
<thead>
<tr>
<th>Product selectivity</th>
<th>210 °C</th>
<th>220 °C</th>
<th>230 °C</th>
<th>240 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in</td>
<td>out</td>
<td>in</td>
<td>out</td>
</tr>
<tr>
<td>CH₄</td>
<td>4.6</td>
<td>6.7</td>
<td>8.2</td>
<td>10.5</td>
</tr>
<tr>
<td>C₂-C₄</td>
<td>2.4</td>
<td>2.0</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>C₅⁺</td>
<td>89.9</td>
<td>86.6</td>
<td>83.6</td>
<td>79.6</td>
</tr>
<tr>
<td>CO₂</td>
<td>3.1</td>
<td>4.7</td>
<td>4.9</td>
<td>6.7</td>
</tr>
</tbody>
</table>

- **Increasing temperature**
 - CO conversion ↑
 - C₂-C₄, CO₂ and CH₄ ↑
 - C₅⁺ ↓

in-10Co/CNT more selective to C₅⁺ and less selective to CO₂ and CH₄
Effect of catalytic site position of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis

Experimental

Introduction

Results

Conclusions

in-10Co/CNT more selective to C_{5+} (higher FTS rate) and less selective to CO2 (lower WGS rate)
The favourable behaviour of \textbf{in-10Co/CNT} are related to:

- \textit{Electron deficiency in the inner surface}
 improving the reduction behaviour of the CNT catalysts

- \textit{Confinement effects}
 increasing the contact time of the reactants with the active sites, resulting in production of heavier hydrocarbons

- \textit{No mass transfer limitations}
 due to high selectivity to \(\text{C}_{5+} \)
ACKNOWLEDGMENTS

The authors express their gratitude for the TEM characterization by Mrs. Susan Belfri (Microscopy & Microanalysis Facility, UNB), for the ICP-MS analysis by Fan Jianzhong from the Department of Geological Sciences, University of Saskatchewan, for the XRD analysis by Tom Bonli, University of Saskatchewan and for the TPR analysis by Jorge Vicente Peñalosa, Department of Chemical Engineering, University of The Basque Country.

Eva Epelde is grateful for the Ph.D. grant from the Department of Education, University and Research of the Basque Country (BFI08.122)
ESKERRIK ASKO MUCHAS GRACIAS THANK YOU

eva.epelde@ehu.es