Enantiocomplementary synthesis of chiral alcohols combining photocatalysis and whole-cell biocatalysis in a one-pot cascade process

Conference Dates

September 15-19, 2019


As a powerful tool in synthetic organic chemistry, photocatalysis has the features of green, better atom economy, and mild conditions [1-2]. Recently, some cascade reaction protocols have been properly designed by combining photocatalysis and biocatalysis[3-4]. For example, Zhao and Hartwig reported an asymmetric reaction which coupled photocatalysts for E/Z isomerization of alkenes with ene-reductases for the reduction of carbon–carbon double bonds, to generate valuable enantioenriched products [5], which achieved the dual-advantages of both photocatalysis and biocatalysis. We envisioned a photochemo-enzymatic one-pot whole-cell process to convert a series of carboxylic acids into corresponding chiral alcohols with good yields (up to 93%) and excellent stereoselectivity (up to 99% ee). The photocatalysis step was conducted in aqueous phase by using O2 as oxidant and the following whole cell bioreduction without the addition of the expensive cofactor NADPH was a much milder and more efficient approach to obtain chiral alcohols. All these advantages indicate that the photochemo-enzymatic one-pot transformation may have great potential in green synthetic chemistry.

Please click Additional Files below to see the full abstract.

This document is currently not available here.