Sequential whole cell conversion process for production of D-psicose and D- mannitol from D-fructose

Conference Dates

March 4-8, 2018


Rare sugars, which exist only limited quantities naturally, have received considerable attention because of its various specific nutritional and biological functions. Likewise, D-psicose (D-ribo-2-hexulose or D-allulose), a C-3 epimer of D-fructose, has many uses which include reducing intra-abdominal fat accumulation, protecting pancreas beta-islets and improving insulin sensitivity. Especially, D-psicose has only 0.3% calories compared to sucrose, while it has 70% relative sweetness. Additionally, in 2012, D-psicose was approved as a food additive and designated as Generally Recognized As Safe (GRAS) by Food and Drug Administration (FDA). Despite such abundant advantages, there is no economical way of mass production of D-psicose. Recently, biological production of D-psicose from D-fructose using D-psicose 3-epimerase (DPE) has been developed. However, the conversion yield is below 30%, which causes an undesirable increase of purification cost because of the similar solubility of D-psicose and D-fructose. Thus, we addressed the problem by converting the residual fructose, after the reaction of D-psicose production, to D-mannitol, which has a low solubility. The sequential whole cell conversion reactions for D-psicose and D-mannitol allow a convenient and economic purification of both products. This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant#: PJ01106201), RDA, Korea.


1) Carsten Bäumchen & Stephanie Bringer-Meyer (2007), Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum, Appl Microbiol Biotechnol 76(3):545–52.

2) Ortiz, M. E., Bleckwedel, J., Raya, R. R., & Mozzi, F. (2013). Biotechnological and in situ food production of polyols by lactic acid bacteria, Appl Microbiol Biotechnol 97:4713-4726

3) Park, Y., Oh, E. J., Jo, J., Jin, Y., & Seo, J. (2016). Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 37:105–113.

This document is currently not available here.