Evaluation of the environmental degradation of interphases in Ceramic Matrix Composites (CMCs) via in-situ SEM micromechanical testing

Conference Dates

September 29-October 4, 2019


The need to increase the cycle efficiency and reduce NOx emissions from aero-engines has promoted the development of Silicon Carbide (SiC) based Ceramic Matrix Composites (CMCs) which have entered in service in aircraft turbine engines as replacements for some Ni-based superalloys. The main tendency of material choice is converging to CMCs constituted by SiC fibres coated with a thin (0.1-1 µm) BN interphase within a SiC matrix (SiC/BN/SiC), resulting in an optimised tough ceramic composite. However, unlike the generic tendencies found for metallic materials, environmental effects seem to not follow a clear tendency as hottest temperatures do not necessarily result in more severe degradation. This is due to the complex degradation thermodynamics occurring at the interface of the SiC-BN system such as volatilisation of B species, borosilicate glass formation or formation of self-healing oxide products.

Please click Additional Files below to see the full abstract.

36.pdf (211 kB)

This document is currently not available here.